Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Anat ; 241(2): 500-517, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35373345

RESUMEN

The Kromdraai site in South Africa has yielded numerous early hominin fossils since 1938. As a part of recent excavations within Unit P, a largely complete early hominin calcaneus (KW 6302) was discovered. Due to its role in locomotion, the calcaneus has the potential to reveal important form/function relationships. Here, we describe KW 6302 and analyze its preserved morphology relative to human and nonhuman ape calcanei, as well as calcanei attributed to Australopithecus afarensis, Australopithecus africanus, Australopithecus sediba, Homo naledi, and the Omo calcaneus (either Paranthropus or early Homo). KW 6302 calcaneal morphology is assessed using numerous quantitative metrics including linear measures, calcaneal robusticity index, relative lateral plantar process position, Achilles tendon length reconstruction, and a three-dimensional geometric morphometric sliding semilandmark analysis. KW 6302 exhibits an overall calcaneal morphology that is intermediate between humans and nonhuman apes, although closer to modern humans. KW 6302 possesses many traits that indicate it was likely well-adapted for terrestrial bipedal locomotion, including a relatively flat posterior talar facet and a large lateral plantar process that is similarly positioned to modern humans. It also retains traits that indicate that climbing may have remained a part of its locomotor repertoire, such as a relatively gracile tuber and a large peroneal trochlea. Specimens from Kromdraai have been attributed to either Paranthropus robustus or early Homo; however, there are no definitively attributed calcanei for either genus, making it difficult to taxonomically assign this specimen. KW 6302 and the Omo calcaneus, however, fall outside the range of expected variation for an extant genus, indicating that if the Omo calcaneus was Paranthropus, then KW 6302 would likely be attributed to early Homo (or vice versa).


Asunto(s)
Calcáneo , Hominidae , Animales , Evolución Biológica , Calcáneo/anatomía & histología , Fósiles , Hominidae/anatomía & histología , Humanos , Sudáfrica
2.
Nature ; 600(7889): 468-471, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34853470

RESUMEN

Bipedal trackways discovered in 1978 at Laetoli site G, Tanzania and dated to 3.66 million years ago are widely accepted as the oldest unequivocal evidence of obligate bipedalism in the human lineage1-3. Another trackway discovered two years earlier at nearby site A was partially excavated and attributed to a hominin, but curious affinities with bears (ursids) marginalized its importance to the paleoanthropological community, and the location of these footprints fell into obscurity3-5. In 2019, we located, excavated and cleaned the site A trackway, producing a digital archive using 3D photogrammetry and laser scanning. Here we compare the footprints at this site with those of American black bears, chimpanzees and humans, and we show that they resemble those of hominins more than ursids. In fact, the narrow step width corroborates the original interpretation of a small, cross-stepping bipedal hominin. However, the inferred foot proportions, gait parameters and 3D morphologies of footprints at site A are readily distinguished from those at site G, indicating that a minimum of two hominin taxa with different feet and gaits coexisted at Laetoli.


Asunto(s)
Pie/anatomía & histología , Pie/fisiología , Fósiles , Marcha/fisiología , Hominidae/clasificación , Hominidae/fisiología , Animales , Archivos , Femenino , Hominidae/anatomía & histología , Humanos , Imagenología Tridimensional , Rayos Láser , Masculino , Modelos Biológicos , Pan troglodytes/anatomía & histología , Pan troglodytes/fisiología , Fotogrametría , Filogenia , Tanzanía , Ursidae/anatomía & histología , Ursidae/fisiología
3.
Anat Rec (Hoboken) ; 303(9): 2382-2391, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32134211

RESUMEN

Modern humans have the longest Achilles tendon (AT) of all the living primates. It has been proposed that this anatomy increases locomotor efficiency and that its elongation may have played a crucial role in the origin and early evolution of the genus Homo. Unfortunately, determining the length of the AT in extinct hominins has been difficult as tendons do not fossilize. Several methods have been proposed for estimating the length of the AT from calcaneal morphology, but the results have been inconclusive. This study tested the relationship between the area of the superior calcaneal facet and AT length in extant primates. The superior facet is instructive because it anchors the retrocalcaneal bursa, a soft tissue structure which helps to reduce friction between the AT and the calcaneus. Calcanei from 145 extant anthropoid primates from 12 genera were photographed in posterior view and the relative superior facet size quantified. AT lengths were obtained from published sources. The relative area of the superior facet is predictive of AT length in primates (R2 = 0.83; p < .001) and differs significantly between the great apes and humans (p < 0.001). When applied to fossil Australopithecus calcanei, our results suggest that australopiths possessed a longer, more human-like, AT than previously thought. These findings have important implications for the locomotor capabilities of Australopithecus, including their capacity for endurance running and climbing.


Asunto(s)
Tendón Calcáneo/anatomía & histología , Evolución Biológica , Calcáneo/anatomía & histología , Pie/anatomía & histología , Hominidae/anatomía & histología , Carrera/fisiología , Tendón Calcáneo/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Calcáneo/fisiología , Pie/fisiología , Fósiles , Hominidae/fisiología
4.
Proc Natl Acad Sci U S A ; 116(23): 11396-11401, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31097590

RESUMEN

α-Dystroglycan (α-DG) is a highly glycosylated basement membrane receptor that is cleaved by the proprotein convertase furin, which releases its N-terminal domain (α-DGN). Before cleavage, α-DGN interacts with the glycosyltransferase LARGE1 and initiates functional O-glycosylation of the mucin-like domain of α-DG. Notably, α-DGN has been detected in a wide variety of human bodily fluids, but the physiological significance of secreted α-DGN remains unknown. Here, we show that mice lacking α-DGN exhibit significantly higher viral titers in the lungs after Influenza A virus (IAV) infection (strain A/Puerto Rico/8/1934 H1N1), suggesting an inability to control virus load. Consistent with this, overexpression of α-DGN before infection or intranasal treatment with recombinant α-DGN prior and during infection, significantly reduced IAV titers in the lungs of wild-type mice. Hemagglutination inhibition assays using recombinant α-DGN showed in vitro neutralization of IAV. Collectively, our results support a protective role for α-DGN in IAV proliferation.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Distroglicanos/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Sustancias Protectoras/farmacología , Animales , Membrana Basal/efectos de los fármacos , Membrana Basal/virología , Líquidos Corporales/efectos de los fármacos , Líquidos Corporales/virología , Línea Celular , Glicosilación/efectos de los fármacos , Células HEK293 , Humanos , Inflamación/tratamiento farmacológico , Inflamación/virología , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Pulmón/efectos de los fármacos , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología , Carga Viral/métodos
5.
Evol Anthropol ; 27(5): 197-217, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30242943

RESUMEN

There are 26 bones in each foot (52 in total), meaning that roughly a quarter of the human skeleton consists of foot bones. Yet, early hominin foot fossils are frustratingly rare, making it quite difficult to reconstruct the evolutionary history of the human foot. Despite the continued paucity of hominid or hominin foot fossils from the late Miocene and early Pliocene, the last decade has witnessed the discovery of an extraordinary number of early hominin foot bones, inviting a reassessment of how the human foot evolved, and providing fresh new evidence for locomotor diversity throughout hominin evolution. Here, we provide a review of our current understanding of the evolutionary history of the hominin foot.


Asunto(s)
Evolución Biológica , Pie/anatomía & histología , Pie/fisiología , Caminata/fisiología , Animales , Antropología Física , Fósiles , Hominidae , Humanos
6.
J Hum Evol ; 123: 24-34, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30075872

RESUMEN

The evolution of bipedalism in the hominin lineage has shaped the posterior human calcaneus into a large, robust structure considered to be adaptive for dissipating peak compressive forces and energy during heel-strike. A unique anatomy thought to contribute to the human calcaneus and its function is the lateral plantar process (LPP). While it has long been known that humans possess a plantarly positioned LPP and apes possess a more dorsally positioned homologous structure, the relative position of the LPP and intraspecific variation of this structure have never been quantified. Here, we present a method for quantifying relative LPP position and find that, while variable, humans have a significantly more plantar position of the LPP than that found in the apes. Among extinct hominins, while the position of the LPP in Australopithecus afarensis falls within the human distribution, the LPP is more dorsally positioned in Australopithecus sediba and barely within the modern human range of variation. Results from a resampling procedure suggest that these differences can reflect either individual variation of a foot structure/function largely shared among Australopithecus species, or functionally distinct morphologies that reflect locomotor diversity in Plio-Pleistocene hominins. An implication of the latter possibility is that calcaneal changes adaptive for heel-striking bipedalism may have evolved independently in two different hominin lineages.


Asunto(s)
Antropología Física/métodos , Calcáneo/anatomía & histología , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Locomoción , Animales , Evolución Biológica , Fenómenos Biomecánicos , Locomoción/fisiología , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...