Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Dairy Sci ; 107(2): 978-991, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37709036

RESUMEN

Data on the enteric methane emissions of individual cows are useful not just in assisting management decisions and calculating herd inventories but also as inputs for animal genetic evaluations. Data generation for many animal characteristics, including enteric methane emissions, can be expensive and time consuming, so being able to extract as much information as possible from available samples or data sources is worthy of investigation. The objective of the present study was to attempt to predict individual cow methane emissions from the information contained within milk samples, specifically the spectrum of light transmittance across different wavelengths of the mid-infrared (MIR) region of the electromagnetic spectrum. A total of 93,888 individual spot measures of methane (i.e., individual samples of an animal's breath when using the GreenFeed technology) from 384 lactations on 277 grazing dairy cows were collapsed into weekly averages expressed as grams per day; each weekly average coincided with a MIR spectral analysis of a morning or evening individual cow milk sample. Associations between the spectra and enteric methane measures were performed separately using partial least squares regression or neural networks with different tuning parameters evaluated. Several alternative definitions of the enteric methane phenotype (i.e., average enteric methane in the 6 d preceding or 6 d following taking the milk sample or the average of the 6 d before and after the milk sample, all of which also included the enteric methane emitted on the day of milk sampling), the candidate model features (e.g., milk yield, milk composition, and milk MIR) as well as validation strategy (i.e., cross-validation or leave-one-experimental treatment-out) were evaluated. Irrespective of the validation method, the prediction accuracy was best when the average of the milk MIR from the morning and evening milk sample was used and the prediction model was developed using neural networks; concurrently including milk yield and days in milk in the prediction model generated superior predictions relative to just the spectral information alone. Furthermore, prediction accuracy was best when the enteric methane phenotype was the average of at least 20 methane spot measures across a 6-d period flanking each side of the milk sample with associated spectral data. Based on the strategy that achieved the best accuracy of prediction, the correlation between the actual and predicted daily methane emissions when based on 4-fold cross-validation varied per validation stratum from 0.68 to 0.75; the corresponding range when validated on each of the 8 different experimental treatments focusing on alternative pasture grazing systems represented in the dataset varied from 0.55 to 0.71. The root mean square error of prediction across the 4-folds of cross-validation was 37.46 g/d, whereas the root mean square error averaged across all folds of leave-one-treatment-out was 37.50 g/d. Results suggest that even with the likely measurement errors contained within the MIR spectrum and gold standard enteric methane phenotype, enteric methane can be reasonably well predicted from the infrared spectrum of milk samples. What is yet to be established, however, is whether (a) genetic variation exists in this predicted enteric methane phenotype and (b) selection on estimates of genetic merit for this phenotype translate to actual phenotypic differences in enteric methane emissions.


Asunto(s)
Líquidos Corporales , Leche , Femenino , Bovinos , Animales , Leche/química , Metano/análisis , Lactancia , Líquidos Corporales/química , Proyectos de Investigación , Dieta/veterinaria
2.
J Dairy Sci ; 106(12): 8871-8884, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37641366

RESUMEN

Reducing nitrogen pollution while maintaining milk production is a major challenge of dairy production. One of the keys to delivering on this challenge is to improve the efficiency of how dairy cows use nitrogen. Thus, estimating the nitrogen utilization of lactating grazing dairy cows and exploring the association between animal factors and productivity with nitrogen utilization are the first steps to understanding the nitrogen utilization complex in dairy cows. Nitrogen utilization metrics were derived from milk and body weight records from 1,291 grazing dairy cows of multiple breeds and crossbreeds; all cows had sporadic information on nitrogen intake concurrent with information on nitrogen sinks (and other nitrogen sources, such as body tissue mobilization). Several nitrogen utilization metrics were investigated, including nitrogen use efficiency (nitrogen output as products such as milk and meat divided by nitrogen intake) and nitrogen excreted (nitrogen intake less the nitrogen output as products such as milk and meat). In the present study, a primiparous Holstein-Friesian used, on average, 20.6% of the nitrogen it ate, excreting the surplus as feces and urine, representing 402 g of nitrogen per day. Intercow variability existed, with a between-cow standard deviation of 0.0094 for nitrogen use efficiency and 24 g of nitrogen per day for nitrogen excretion. As lactation progressed, nitrogen use efficiency declined and nitrogen excretion increased. Nevertheless, nitrogen use efficiency improved (i.e., decreased) from first to second parity, even though it did not improve from second to third parity or greater. Furthermore, nitrogen excretion continued to increase from first to third parity or greater. Nitrogen use efficiency and nitrogen excretion were negatively correlated (-0.56 to -0.40), signifying that dairy cows who partition more of the ingested nitrogen into products such as milk and meat, on average, also excrete less nitrogen. Milk urea nitrogen was, at best, weakly correlated with nitrogen use efficiency and nitrogen excretion; the correlations were between -0.01 and 0.06. In conclusion, several cow-level factors such as parity, stage of lactation, and breed were associated with the range of different nitrogen efficiency metrics investigated; moreover, even after accounting for such effects, 4.8% to 6.3% of the remaining variation in the nitrogen use efficiency and nitrogen balance metrics were attributable to intercow differences.


Asunto(s)
Dieta , Lactancia , Femenino , Embarazo , Bovinos , Animales , Dieta/veterinaria , Estudios Transversales , Leche/química , Nitrógeno/metabolismo , Alimentación Animal/análisis
3.
J Dairy Sci ; 106(7): 4991-5001, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37268571

RESUMEN

Use of selective dry cow antimicrobial therapy requires to precisely differentiate cows with an intramammary infection (IMI) from uninfected cows close to drying-off to enable treatment allocation. Milk somatic cell count (SCC) is an indicator of an inflammatory response in the mammary gland and is usually associated with IMI. However, SCC can also be influenced by cow-level variables such as milk yield, lactation number and stage of lactation. In recent years, predictive algorithms have been developed to differentiate cows with IMI from cows without IMI based on SCC data. The objective of this observational study was to explore the association between SCC and subclinical IMI, taking cognizance of cow-level predictors on Irish seasonal spring calving, pasture-based systems. Additionally, the optimal test-day SCC cut-point (maximized sensitivity and specificity) for IMI diagnosis was determined. A total of 2,074 cows, across 21 spring calving dairy herds with an average monthly milk weighted bulk tank SCC of ≤200,000 cells/mL were enrolled in the study. Quarter-level milk sampling was carried out on all cows in late lactation (interquartile range = 240-261 d in milk) for bacteriological culturing. Bacteriological results were used to define cows with IMI, when ≥1 quarter sample resulted in bacterial growth. Cow-level test-day SCC records were provided by the herd owners. The ability of the average, maximum and last test-day SCC to predict infection were compared using receiver operator curves. Predictive logistic regression models tested included parity (primiparous or multiparous), yield at last test-day and a standardized count of high SCC test-days. In total, 18.7% of cows were classified as having an IMI, with first parity cows having a higher proportion of IMI (29.3%) compared with multiparous cows (16.1%). Staphylococcus aureus accounted for the majority of these infections. The last test-day SCC was the best predictor of infection with the highest area under the curve. The inclusions of parity, yield at last test-day, and a standardized count of high SCC test-days as predictors did not significantly improve the ability of last test-day SCC to predict IMI. The cut-point for last test-day SCC which maximized sensitivity and specificity was 64,975 cells/mL. This study indicates that in Irish seasonal pasture-based dairy herds, with low bulk tank SCC control programs, the last test-day SCC (interquartile range days in milk = 221-240) is the best predictor of IMI in late lactation.


Asunto(s)
Enfermedades de los Bovinos , Mastitis Bovina , Animales , Bovinos , Femenino , Embarazo , Recuento de Células/veterinaria , Recuento de Células/métodos , Lactancia/fisiología , Glándulas Mamarias Animales/microbiología , Mastitis Bovina/microbiología , Leche/microbiología
4.
J Dairy Sci ; 106(6): 4232-4244, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37105880

RESUMEN

Body condition score (BCS) is a subjective estimate of body reserves in cows. Body condition score and its change in early lactation have been associated with cow fertility and health. The aim of the present study was to estimate change in BCS (ΔBCS) using mid-infrared spectra of the milk, with a particular focus on estimating ΔBCS in cows losing BCS at the fastest rate (i.e., the cows most of interest to the producer). A total of 73,193 BCS records (scale 1 to 5) from 6,572 cows were recorded. Daily BCS was interpolated from cubic splines fitted through the BCS records, and subsequently used to calculate daily ΔBCS. Body condition score change records were merged with milk mid-infrared spectra recorded on the same week. Both morning (a.m.) and evening (p.m.) spectra were available. Two different statistical methods were used to estimate ΔBCS: partial least squares regression and a neural network (NN). Several combinations of variables were included as model features, such as days in milk (DIM) only, a.m. spectra only and DIM, p.m. spectra only and DIM, and a.m. and p.m. spectra as well as DIM. The data used to estimate ΔBCS were either based on the first 120 DIM or all 305 DIM. Daily ΔBCS had a standard deviation of 1.65 × 10-3 BCS units in the 305 DIM data set and of 1.98 × 10-3 BCS units in the 120 DIM data set. Each data set was divided into 4 sub-data sets, 3 of which were used for training the prediction model and the fourth to test it. This process was repeated until all the sub-data sets were considered as the test data set once. Using all 305 DIM, the lowest root mean square error of validation (RMSEV; 0.96 × 10-3 BCS units) and the strongest correlation between actual and estimated ΔBCS (0.82) was achieved with NN using a.m. and p.m. spectra and DIM. Using the 120 DIM data, the lowest RMSEV (0.98 × 10-3 BCS units) and the strongest correlation between actual and estimated ΔBCS (0.87) was achieved with NN using DIM and either a.m. spectra only or a.m. and p.m. spectra together. The RMSEV for records in the lowest 2.5% ΔBCS percentile per DIM in early lactation was reduced up to a maximum of 13% when spectra and DIM were both considered in the model compared with a model that considered just DIM. The performance of the NN using DIM and a.m. spectra only with the 120 DIM data was robust across different strata of farm, parity, year of sampling, and breed. Results from the present study demonstrate the ability of mid-infrared spectra of milk coupled with machine learning techniques to estimate ΔBCS; specifically, the inclusion of spectral data reduced the RMSEV over and above using DIM alone, particularly for cows losing BCS at the fastest rate. This approach can be used to routinely generate estimates of ΔBCS that can subsequently be used for farm decisions.


Asunto(s)
Lactancia , Leche , Embarazo , Femenino , Bovinos , Animales , Estaciones del Año , Paridad , Aprendizaje Automático
5.
Animal ; 16(2): 100449, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35078119

RESUMEN

In the dairy industry, the dry period has been identified as an area for potential reduction in antibiotic use, as part of a one health approach to preserve antibiotic medicines for human health. The objective of this study was to assess the impact of dry cow treatment on somatic cell count (SCC), intramammary infection (IMI) and milk yield on five commercial Irish dairy herds. A total of 842 cows across five spring calving dairy herds with a monthly bulk tank SCC of < 200 000 cells/mL were recruited for this study. At dry-off, cows which had not exceeded 200 000 cells/mL in the previous lactation were assigned one of two dry-off treatments: internal teat seal (ITS) alone (Lo_TS) or antibiotic plus ITS (Lo_AB + TS). Cows which exceeded 200 000 cells/mL in the previous lactation were treated with antibiotic plus ITS and included in the analysis as a separate group (Hi_AB + TS). Test-day SCC and lactation milk yield records were provided by the herd owners. Quarter milk samples were collected at dry-off, after calving and at mid-lactation for bacteriological culture and quarter SCC analysis. Cow level SCC was available for 789 cows and was log-transformed for the purpose of analysis. Overall, the log SCC of the cows in the Lo_TS group was significantly higher than the cows in Lo_AB + TS group and not statistically different to the cows in the Hi_AB + TS group in the subsequent lactation. However, the response to treatment differed according to the herd studied; the log SCC of the cows in the Lo_TS group in Herds 3, 4 and 5 was not statistically different to the cows in Lo_AB + TS group, whereas in the other two herds, the log SCC was significantly higher in the Lo_TS when compared to the Lo_AB + TS group. There was a significant interaction between dry-off group and herds on SCC and odds of infection in the subsequent lactation. The results of this study suggest that the herd prevalence of IMI may be useful in decision-making regarding the treatment of cows with ITS alone at dry-off to mitigate its impact on udder health.


Asunto(s)
Glándulas Mamarias Animales , Mastitis Bovina , Animales , Antibacterianos/uso terapéutico , Bovinos , Recuento de Células/veterinaria , Industria Lechera/métodos , Femenino , Lactancia , Mastitis Bovina/tratamiento farmacológico , Mastitis Bovina/epidemiología , Mastitis Bovina/prevención & control , Leche
6.
J Dairy Sci ; 104(7): 7438-7447, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33865578

RESUMEN

Numerous statistical machine learning methods suitable for application to highly correlated features, as those that exist for spectral data, could potentially improve prediction performance over the commonly used partial least squares approach. Milk samples from 622 individual cows with known detailed protein composition and technological trait data accompanied by mid-infrared spectra were available to assess the predictive ability of different regression and classification algorithms. The regression-based approaches were partial least squares regression (PLSR), ridge regression (RR), least absolute shrinkage and selection operator (LASSO), elastic net, principal component regression, projection pursuit regression, spike and slab regression, random forests, boosting decision trees, neural networks (NN), and a post-hoc approach of model averaging (MA). Several classification methods (i.e., partial least squares discriminant analysis (PLSDA), random forests, boosting decision trees, and support vector machines (SVM)) were also used after stratifying the traits of interest into categories. In the regression analyses, MA was the best prediction method for 6 of the 14 traits investigated [curd firmness at 60 min, αS1-casein (CN), αS2-CN, κ-CN, α-lactalbumin, and ß-lactoglobulin B], whereas NN and RR were the best algorithms for 3 traits each (rennet coagulation time, curd-firming time, and heat stability, and curd firmness at 30 min, ß-CN, and ß-lactoglobulin A, respectively), PLSR was best for pH, and LASSO was best for CN micelle size. When traits were divided into 2 classes, SVM had the greatest accuracy for the majority of the traits investigated. Although the well-established PLSR-based method performed competitively, the application of statistical machine learning methods for regression analyses reduced the root mean square error compared with PLSR from between 0.18% (κ-CN) to 3.67% (heat stability). The use of modern statistical machine learning methods for trait prediction from mid-infrared spectroscopy may improve the prediction accuracy for some traits.


Asunto(s)
Caseínas , Leche , Animales , Bovinos , Femenino , Lactoglobulinas , Aprendizaje Automático , Proteínas de la Leche , Fenotipo
7.
J Dairy Sci ; 103(12): 11585-11596, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33222859

RESUMEN

Lactoferrin (LF) is a glycoprotein naturally present in milk. Its content varies throughout lactation, but also with mastitis; therefore it is a potential additional indicator of udder health beyond somatic cell count. Condequently, there is an interest in quantifying this biomolecule routinely. First prediction equations proposed in the literature to predict the content in milk using milk mid-infrared spectrometry were built using partial least square regression (PLSR) due to the limited size of the data set. Thanks to a large data set, the current study aimed to test 4 different machine learning algorithms using a large data set comprising 6,619 records collected across different herds, breeds, and countries. The first algorithm was a PLSR, as used in past investigations. The second and third algorithms used partial least square (PLS) factors combined with a linear and polynomial support vector regression (PLS + SVR). The fourth algorithm also used PLS factors, but included in an artificial neural network with 1 hidden layer (PLS + ANN). The training and validation sets comprised 5,541 and 836 records, respectively. Even if the calibration prediction performances were the best for PLS + polynomial SVR, their validation prediction performances were the worst. The 3 other algorithms had similar validation performances. Indeed, the validation root mean squared error (RMSE) ranged between 162.17 and 166.75 mg/L of milk. However, the lower standard deviation of cross-validation RMSE and the better normality of the residual distribution observed for PLS + ANN suggest that this modeling was more suitable to predict the LF content in milk from milk mid-infrared spectra (R2v = 0.60 and validation RMSE = 162.17 mg/L of milk). This PLS +ANN model was then applied to almost 6 million spectral records. The predicted LF showed the expected relationships with milk yield, somatic cell score, somatic cell count, and stage of lactation. The model tended to underestimate high LF values (higher than 600 mg/L of milk). However, if the prediction threshold was set to 500 mg/L, 82% of samples from the validation having a content of LF higher than 600 mg/L were detected. Future research should aim to increase the number of those extremely high LF records in the calibration set.


Asunto(s)
Algoritmos , Bovinos , Lactoferrina/análisis , Aprendizaje Automático , Leche/química , Espectrofotometría Infrarroja/veterinaria , Animales , Calibración , Femenino , Lactancia , Análisis de los Mínimos Cuadrados
8.
J Dairy Sci ; 102(10): 8907-8918, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31351717

RESUMEN

The objective of this study was to compare mid-infrared reflectance spectroscopy (MIRS) analysis of milk and near-infrared reflectance spectroscopy (NIRS) analysis of feces with regard to their ability to predict the dry matter intake (DMI) of lactating grazing dairy cows. A data set comprising 1,074 records of DMI from 457 cows was available for analysis. Linear regression and partial least squares regression were used to develop the equations using the following variables: (1) milk yield (MY), fat percentage, protein percentage, body weight (BW), stage of lactation (SOL), and parity (benchmark equation); (2) MIRS wavelengths; (3) MIRS wavelengths, MY, fat percentage, protein percentage, BW, SOL, and parity; (4) NIRS wavelengths; (5) NIRS wavelengths, MY, fat percentage, protein percentage, BW, SOL, and parity; (6) MIRS and NIRS wavelengths; and (7) MIRS wavelengths, NIRS wavelengths, MY, fat percentage, protein percentage, BW, SOL, and parity. The equations were validated both within herd using animals from similar experiments and across herds using animals from independent experiments. The accuracy of equations was greater for within-herd validation compared with across-herds validation. Across-herds validation was deemed the more suitable method to assess equations for robustness and real-world application. The benchmark equation was more accurate [coefficient of determination (R2) = 0.60; root mean squared error (RMSE) = 1.68 kg] than MIRS alone (R2 = 0.30; RMSE = 2.23 kg) or NIRS alone (R2 = 0.16; RMSE = 2.43 kg). The combination of the benchmark equation with MIRS (R2 = 0.64; RMSE = 1.59 kg) resulted in slightly superior fitting statistics compared with the benchmark equation alone. The combination of the benchmark equation with NIRS (R2 = 0.58; RMSE = 1.71 kg) did not result in a more accurate prediction equation than the benchmark equation. The combination of MIRS and NIRS wavelengths resulted in superior fitting statistics compared with either method alone (R2 = 0.36; RMSE = 2.15 kg). The combination of the benchmark equation and MIRS and NIRS wavelengths resulted in the most accurate equation (R2 = 0.68; RMSE = 1.52 kg). A further analysis demonstrated that Holstein-Friesian cows could predict the DMI of Jersey × Holstein-Friesian crossbred cows using both MIRS and NIRS. Similarly, the Jersey × Holstein-Friesian animals could predict the DMI of Holstein-Friesian cows using both MIRS and NIRS. The equations developed in this study have the capacity to predict DMI of grazing dairy cows. From a practicality perspective, MIRS in combination with variables in the benchmark equation is the most suitable equation because MIRS is currently used on all milk-recorded milk samples from dairy cows.


Asunto(s)
Bovinos , Dieta/veterinaria , Herbivoria , Espectrofotometría Infrarroja/veterinaria , Animales , Peso Corporal , Ingestión de Alimentos , Heces/química , Femenino , Lactancia , Análisis de los Mínimos Cuadrados , Modelos Lineales , Leche , Embarazo , Espectrofotometría Infrarroja/métodos
9.
J Dairy Sci ; 102(6): 5295-5304, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30981479

RESUMEN

Sustainable dairy cow performance relies on coevolution in the development of breeding and management strategies. Tailoring breeding programs to herd performance metrics facilitates improved responses to breeding decisions. Although herd-level raw metrics on performance are useful, implicitly included within such statistics is the mean herd genetic merit. The objective of the present study was to quantify the expected response from selection decisions on additive and nonadditive merit by herd performance metrics independent of herd mean genetic merit. Performance traits considered in the present study were age at first calving, milk yield, calving to first service, number of services, calving interval, and survival. Herd-level best linear unbiased estimates (BLUE) for each performance trait were available on a maximum of 1,059 herds, stratified as best, average, and worst for each performance trait separately. The analyses performed included (1) the estimation of (co)variance for each trait in the 3 BLUE environments and (2) the regression of cow-level phenotypic performance on either the respective estimated breeding value (EBV) or the heterosis coefficient of the cow. A fundamental assumption of genetic evaluations is that 1 unit change in EBV equates to a 1 unit change in the respective phenotype; results from the present study, however, suggest that the realization of the change in phenotypic performance is largely dependent on the herd BLUE for that trait. Herds achieving more yield, on average, than expected from their mean genetic merit, had a 20% greater response to changes in EBV as well as 43% greater genetic standard deviation relative to herds within the worst BLUE for milk yield. Conversely, phenotypic performance in fertility traits (with the exception of calving to first service) tended to have a greater response to selection as well as a greater additive genetic standard deviation within the respective worst herd BLUE environments; this is suggested to be due to animals performing under more challenging environments leading to larger achievable gains. The attempts to exploit nonadditive genetic effects such as heterosis are often the basis of promoting cross-breeding, yet the results from the present study suggest that improvements in phenotypic performance is largely dependent on the environment. The largest gains due to heterotic effects tended to be within the most stressful (i.e., worst) BLUE environment for all traits, thus suggesting the heterosis effects can be beneficial in mitigating against poorer environments.


Asunto(s)
Cruzamiento , Bovinos/genética , Lactancia/genética , Envejecimiento , Crianza de Animales Domésticos , Animales , Femenino , Fertilidad/genética , Leche , Parto/genética , Embarazo , Selección Genética
10.
J Dairy Sci ; 102(3): 2560-2577, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30612799

RESUMEN

The objective of this study was to validate the effect of genetic improvement using the Irish genetic merit index, the Economic Breeding Index (EBI), on total lactation performance and lactation profiles for milk yield, milk solids yield (fat plus protein; kg), and milk fat, protein, and lactose content within 3 pasture-based feeding treatments (FT) and to investigate whether an interaction exists between genetic group (GG) of Holstein-Friesian and pasture-based FT. The 2 GG were (1) extremely high EBI representative of the top 5% nationally (referred to as the elite group) and (2) representative of the national average EBI (referred to as the NA group). Cows from each GG were randomly allocated each year to 1 of 3 pasture-based FT: control, lower grass allowance, and high concentrate. The effects of GG, FT, year, parity, and the interaction between GG and FT adjusted for calving day of year on milk and milk solids (fat plus protein; kg) production across lactation were studied using mixed models. Cow was nested within GG to account for repeated cow records across years. The overall and stage of lactation-specific responses to concentrate supplementation (high concentrate vs. control) and reduced pasture allowance (lower grass allowance vs. control) were tested. Profiles of daily milk yield, milk solids yield, and milk fat, protein, and lactose content for each week of lactation for the elite and NA groups within each FT and for each parity group within the elite and NA groups were generated. Phenotypic performance was regressed against individual cow genetic potential based on predicted transmitting ability. The NA cows produced the highest milk yield. Milk fat and protein content was higher for the elite group and consequently yield of solids-corrected milk was similar, whereas yield of milk solids tended to be higher for the elite group compared with the NA group. Milk lactose content did not differ between GG. Responses to concentrate supplementation or reduced pasture allowance did not differ between GG. Milk production profiles illustrated that elite cows maintained higher production but with lower persistency than NA cows. Regression of phenotypic performance against predicted transmitting ability illustrated that performance was broadly in line with expectation. The results illustrate that the superiority of high-EBI cattle is consistent across diverse pasture-based FT. The results also highlight the success of the EBI to deliver production performance in line with the national breeding objective: lower milk volume with higher fat and protein content.


Asunto(s)
Cruzamiento/economía , Bovinos/genética , Bovinos/fisiología , Industria Lechera/métodos , Lactancia/genética , Estaciones del Año , Animales , Bovinos/clasificación , Industria Lechera/economía , Dieta/veterinaria , Grasas/análisis , Femenino , Irlanda , Lactancia/fisiología , Lactosa/metabolismo , Leche/química , Proteínas de la Leche/análisis , Paridad , Poaceae , Embarazo
11.
J Dairy Sci ; 101(7): 6232-6243, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29605317

RESUMEN

Mid-infrared (MIR) spectroscopy of milk was used to predict dry matter intake (DMI) and net energy intake (NEI) in 160 lactating Norwegian Red dairy cows. A total of 857 observations were used in leave-one-out cross-validation and external validation to develop and validate prediction equations using 5 different models. Predictions were performed using (multiple) linear regression, partial least squares (PLS) regression, or best linear unbiased prediction (BLUP) methods. Linear regression was implemented using just milk yield (MY) or fat, protein, and lactose concentration in milk (Mcont) or using MY together with body weight (BW) as predictors of intake. The PLS and BLUP methods were implemented using just the MIR spectral information or using the MIR together with Mcont, MY, BW, or NEI from concentrate (NEIconc). When using BLUP, the MIR spectral wavelengths were always treated as random effects, whereas Mcont, MY, BW, and NEIconc were considered to be fixed effects. Accuracy of prediction (R) was defined as the correlation between the predicted and observed feed intake test-day records. When using the linear regression method, the greatest R of predicting DMI (0.54) and NEI (0.60) in the external validation was achieved when the model included both MY and BW. When using PLS, the greatest R of predicting DMI (0.54) and NEI (0.65) in the external validation data set was achieved when using both BW and MY as predictors in combination with the MIR spectra. When using BLUP, the greatest R of predicting DMI (0.54) in the external validation was when using MY together with the MIR spectra. The greatest R of predicting NEI (0.65) in the external validation using BLUP was achieved when the model included both BW and MY in combination with the MIR spectra or when the model included both NEIconc and MY in combination with MIR spectra. However, although the linear regression coefficients of actual on predicted values for DMI and NEI were not different from unity when using PLS, they were less than unity for some of the models developed using BLUP. This study shows that MIR spectral data can be used to predict NEI as a measure of feed intake in Norwegian Red dairy cattle and that the accuracy is augmented if additional, often available data are also included in the prediction model.


Asunto(s)
Peso Corporal/inmunología , Bovinos , Ingestión de Energía/fisiología , Leche/química , Espectrofotometría Infrarroja/veterinaria , Animales , Bovinos/metabolismo , Femenino , Lactancia , Valor Predictivo de las Pruebas , Espectrofotometría Infrarroja/métodos
12.
J Dairy Sci ; 101(2): 1267-1280, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29174146

RESUMEN

The objective of the present study was to investigate the phenotypic inter- and intra-relationships within and among alternative feed efficiency metrics across different stages of lactation and parities; the expected effect of genetic selection for feed efficiency on the resulting phenotypic lactation profiles was also quantified. A total of 8,199 net energy intake (NEI) test-day records from 2,505 lactations on 1,290 cows were used. Derived efficiency traits were either ratio based or residual based; the latter were derived from least squares regression models. Residual energy intake (REI) was defined as NEI minus predicted energy requirements based on lactation performance; residual energy production (REP) was defined as net energy for lactation minus predicted energy requirements based on lactation performance. Energy conversion efficiency was defined as net energy for lactation divided by NEI. Pearson phenotypic correlations among traits were computed across lactation stages and parities, and the significance of the differences was determined using the Fisher r-to-z transformation. Sources of variation in the feed efficiency metrics were investigated using linear mixed models, which included the fixed effects of contemporary group, breed, parity, stage of lactation, and the 2-way interaction of parity by stage of lactation. With the exception of REI, parity was associated with all efficiency and production traits. Stage of lactation, as well as the 2-way interaction of parity by stage of lactation, were associated with all efficiency and production traits. Phenotypic correlations among the efficiency and production traits differed not only by stage of lactation but also by parity. For example, the strong phenotypic correlation between REI and energy balance (EB; 0.89) for cows in parity 3 or greater and early lactation was weaker for parity 1 cows at the same lactation stage (0.81), suggesting primiparous cows use the ingested energy for both milk production and growth. Nonetheless, these strong phenotypic correlations between REI and EB suggested negative REI animals (i.e., more efficient) are also in more negative EB. These correlations were further supported when assessing the effect on phenotypic performance of animals genetically divergent for feed intake and efficiency based on parental average. Animals genetically selected to have lower REI resulted in cows who consumed less NEI but were also in negative EB throughout the entire lactation. Nonetheless, such repercussions of negative EB do not imply that selection for negative REI (as defined here) should not be practiced, but instead should be undertaken within the framework of a balanced breeding objective, which includes traits such as reproduction and health.


Asunto(s)
Bovinos/genética , Metabolismo Energético/genética , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/genética , Animales , Cruzamiento , Bovinos/fisiología , Dieta/veterinaria , Ingestión de Alimentos/genética , Ingestión de Energía , Metabolismo Energético/fisiología , Femenino , Lactancia/genética , Leche , Necesidades Nutricionales , Paridad , Fenotipo , Embarazo , Reproducción
13.
J Dairy Sci ; 100(9): 7345-7361, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28711262

RESUMEN

Milk color is one of the sensory properties that can influence consumer choice of one product over another and it influences the quality of processed dairy products. This study aims to quantify the cow-level genetic and nongenetic factors associated with bovine milk color traits. A total of 136,807 spectra from Irish commercial and research herds (with multiple breeds and crosses) were used. Milk lightness (Lˆ*), red-green index (aˆ*) and yellow-blue index (bˆ*) were predicted for individual milk samples using only the mid-infrared spectrum of the milk sample. Factors associated with milk color were breed, stage of lactation, parity, milking-time, udder health status, pasture grazing, and seasonal calving. (Co)variance components for Lˆ*,aˆ*, and bˆ* were estimated using random regressions on the additive genetic and within-lactation permanent environmental effects. Greater bˆ* value (i.e., more yellow color) was evident in milk from Jersey cows. Milk Lˆ* increased consistently with stage of lactation, whereas aˆ* increased until mid lactation to subsequently plateau. Milk bˆ* deteriorated until 31 to 60 DIM, but then improved thereafter until the end of lactation. Relative to multiparous cows, milk yielded by primiparae was, on average, lighter (i.e., greater Lˆ*), more red (i.e., greater aˆ*), and less yellow (i.e., lower bˆ*). Milk from the morning milk session had lower Lˆ*,aˆ*, and bˆ* Heritability estimates (±SE) for milk color varied between 0.15 ± 0.02 (30 DIM) and 0.46 ± 0.02 (210 DIM) for Lˆ*, between 0.09 ± 0.01 (30 DIM) and 0.15 ± 0.02 (305 DIM) for aˆ*, and between 0.18 ± 0.02 (21 DIM) and 0.56 ± 0.03 (305 DIM) for bˆ* For all the 3 milk color features, the within-trait genetic correlations approached unity as the time intervals compared shortened and were generally <0.40 between the peripheries of the lactation. Strong positive genetic correlations existed between bˆ* value and milk fat concentration, ranging from 0.82 ± 0.19 at 5 DIM to 0.96 ± 0.01 at 305 DIM and confirming the observed phenotypic correlation (0.64, SE = 0.01). Results of the present study suggest that breeding strategies for the enhancement of milk color traits could be implemented for dairy cattle populations. Such strategies, coupled with the knowledge of milk color traits variation due to nongenetic factors, may represent a tool for the dairy processors to reduce, if not eliminate, the use of artificial pigments during milk manufacturing.


Asunto(s)
Leche , Fenotipo , Pigmentación/genética , Animales , Cruzamiento , Bovinos , Femenino , Lactancia , Glándulas Mamarias Animales/fisiología , Paridad , Embarazo , Análisis de Regresión
14.
J Dairy Sci ; 100(8): 6272-6284, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28624276

RESUMEN

The objective of the present study was to identify the factors associated with both the protein composition and free amino acid (FAA) composition of bovine milk predicted using mid-infrared spectroscopy. Milk samples were available from 7 research herds and 69 commercial herds. The spectral data from the research herds comprised 94,286 separate morning and evening milk samples; the spectral data from the commercial herds comprised 40,260 milk samples representing a composite sample of both the morning and evening milkings. Mid-infrared spectroscopy prediction models developed in a previous study were applied to all spectra. Factors associated with the predicted protein and FAA composition were quantified using linear mixed models. Factors considered in the model included the fixed effects of calendar month of the test, milking time (i.e., morning, evening, or both combined), parity (1, 2, 3, 4, 5, and ≥6), stage of lactation, the interaction between parity and stage of lactation, breed proportion of the cow (Friesian, Jersey, Norwegian Red, Montbéliarde, and other), and both the general heterosis and recombination coefficients of the cow. Contemporary group as well as both within- and across-lactation permanent environmental effects were included in all models as random effects. Total proteins (i.e., total casein, CN; total whey; and total ß-lactoglobulin) and protein fractions (with the exception of α-lactalbumin) decreased postcalving until 36 to 65 days in milk and increased thereafter. After adjusting the statistical model for differences in crude protein content and milk yield separately, irrespective of stage of lactation, younger animals produced more total proteins (i.e., total CN, total whey, and total ß-lactoglobulin) as well as more total FAA, Glu, and Asp than their older contemporaries. The concentration of all protein fractions (except ß-CN) in milk was greatest in the evening milk, even after adjusting for differences in the crude protein content of the milk. Relative to a purebred Holstein cow, Jersey cows, on average, produced a greater concentration of all CN fractions but less total FAA, Glu, Gly, Asp, and Val in milk. Relative to their respective purebred parental average, first-cross cows produced more total CN and more ß-CN. Results from the present study indicate that many cow-level factors, as well as other factors, are associated with protein composition and FAA composition of bovine milk.


Asunto(s)
Aminoácidos/análisis , Proteínas de la Leche/análisis , Leche/química , Animales , Caseínas , Bovinos , Femenino , Lactancia , Embarazo , Espectroscopía Infrarroja Corta/métodos
15.
J Dairy Sci ; 100(8): 6343-6355, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28571984

RESUMEN

Milk processing attributes represent a group of milk quality traits that are important to the dairy industry to inform product portfolio. However, because of the resources required to routinely measure such quality traits, precise genetic parameter estimates from a large population of animals are lacking for these traits. Milk processing characteristics considered in the present study-rennet coagulation time, curd-firming time, curd firmness at 30 and 60 min after rennet addition, heat coagulation time, casein micelle size, and milk pH-were all estimated using mid-infrared spectroscopy prediction equations. Variance components for these traits were estimated using 136,807 test-day records from 5 to 305 d in milk (DIM) from 9,824 cows using random regressions to model the additive genetic and within-lactation permanent environmental variances. Heritability estimates ranged from 0.18 ± 0.01 (26 DIM) to 0.38 ± 0.02 (180 DIM) for rennet coagulation time; from 0.26 ± 0.02 (5 DIM) to 0.57 ± 0.02 (174 DIM) for curd-firming time; from 0.16 ± 0.01 (30 DIM) to 0.56 ± 0.02 (271 DIM) for curd firmness at 30 min; from 0.13 ± 0.01 (30 DIM) to 0.48 ± 0.02 (271 DIM) for curd firmness at 60 min; from 0.08 ± 0.01 (17 DIM) to 0.24 ± 0.01 (180 DIM) for heat coagulation time; from 0.23 ± 0.02 (30 DIM) to 0.43 ± 0.02 (261 DIM) for casein micelle size; and from 0.20 ± 0.01 (30 DIM) to 0.36 ± 0.02 (151 DIM) for milk pH. Within-trait genetic correlations across DIM weakened as the number of days between compared intervals increased but were mostly >0.4 except between the peripheries of the lactation. Eigenvalues and associated eigenfunctions of the additive genetic covariance matrix for all traits revealed that at least the 80% of the genetic variation among animals in lactation profiles was associated with the height of the lactation profile. Curd-firming time and curd firmness at 30 min were weakly to moderately genetically correlated with milk yield (from 0.33 ± 0.05 to 0.59 ± 0.05 for curd-firming time, and from -0.62 ± 0.03 to -0.21 ± 0.06 for curd firmness at 30 min). Milk protein concentration was strongly genetically correlated with curd firmness at 30 min (0.84 ± 0.02 to 0.94 ± 0.01) but only weakly genetically correlated with milk heat coagulation time (-0.27 ± 0.07 to 0.19 ± 0.06). Results from the present study indicate the existence of exploitable genetic variation for milk processing characteristics. Because of possible indirect deterioration in milk processing characteristics due to selection for greater milk yield, emphasis on milk processing characteristics is advised.


Asunto(s)
Bovinos , Lactancia/genética , Leche/química , Animales , Caseínas , Femenino , Proteínas de la Leche , Fenotipo
16.
J Dairy Sci ; 100(7): 5501-5514, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28478005

RESUMEN

The objective of the present study was to estimate genetic parameters across lactation for measures of energy balance (EB) and a range of feed efficiency variables as well as to quantify the genetic inter-relationships between them. Net energy intake (NEI) from pasture and concentrate intake was estimated up to 8 times per lactation for 2,481 lactations from 1,274 Holstein-Friesian cows. A total of 8,134 individual feed intake measurements were used. Efficiency traits were either ratio based or residual based; the latter were derived from least squares regression models. Residual energy intake (REI) was defined as NEI minus predicted energy requirements [e.g., net energy of lactation (NEL), maintenance, and body tissue anabolism] or supplied from body tissue mobilization; residual energy production was defined as the difference between actual NEL and predicted NEL based on NEI, maintenance, and body tissue anabolism/catabolism. Energy conversion efficiency was defined as NEL divided by NEI. Random regression animal models were used to estimate residual, additive genetic, and permanent environmental (co)variances across lactation. Heritability across lactation stages varied from 0.03 to 0.36 for all efficiency traits. Within-trait genetic correlations tended to weaken as the interval between lactation stages compared lengthened for EB, REI, residual energy production, and NEI. Analysis of eigenvalues and associated eigenfunctions for EB and the efficiency traits indicate the ability to genetically alter the profile of these lactation curves to potentially improve dairy cow efficiency differently at different stages of lactation. Residual energy intake and EB were moderately to strongly genetically correlated with each other across lactation (genetic correlations ranged from 0.45 to 0.90), indicating that selection for lower REI alone (i.e., deemed efficient cows) would favor cows with a compromised energy status; nevertheless, selection for REI within a holistic breeding goal could be used to overcome such antagonisms. The smallest (8.90% of genetic variance) and middle (11.22% of genetic variance) eigenfunctions for REI changed sign during lactation, indicating the potential to alter the shape of the REI lactation profile. Results from the present study suggest exploitable genetic variation exists for a range of efficiency traits, and the magnitude of this variation is sufficiently large to justify consideration of the feed efficiency complex in future dairy breeding goals. Moreover, it is possible to alter the trajectories of the efficiency traits to suit a particular breeding objective, although this relies on very precise across-parity genetic parameter estimates, including genetic correlations with health and fertility traits (as well as other traits).


Asunto(s)
Ingestión de Energía/genética , Metabolismo Energético/genética , Herbivoria/genética , Lactancia/genética , Alimentación Animal/estadística & datos numéricos , Animales , Cruzamiento , Bovinos , Industria Lechera , Femenino , Embarazo
17.
J Dairy Sci ; 100(4): 3293-3304, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28131580

RESUMEN

Despite milk processing characteristics being important quality traits, little is known about the factors underlying their variability, due primarily to the resources required to measure these characteristics in a sufficiently large population. Cow milk coagulation properties (rennet coagulation time, curd-firming time, curd firmness 30 and 60 min after rennet addition), heat coagulation time, casein micelle size, and pH were generated from available mid-infrared spectroscopy prediction models. The prediction models were applied to 136,807 spectra collected from 9,824 Irish dairy cows from research and commercial herds. Sources of variation were investigated using linear mixed models that included the fixed effects of calendar month of test; milking time in the day; linear regressions on the proportion of Friesian, Jersey, Montbéliarde, Norwegian Red, and "other" breeds in the cow; coefficients of heterosis and of recombination loss; parity; stage of lactation; and the 2-way interaction parity × stage of lactation. Within- and across-parity cow effects, contemporary group, and a residual term were also included as random effects in the model. Supplementary analyses considered the inclusion of either test-day milk yield or milk protein concentration as fixed-effects covariates in the multiple regression models. Milk coagulation properties were most favorable (i.e., short rennet coagulation time and strong curd firmness) for cheese manufacturing in early lactation, concurrent with the lowest values of both pH and casein micelle size. Milk coagulation properties and pH deteriorated in mid lactation but improved toward the end of lactation. In direct contrast, heat coagulation time was more favorable in mid lactation and less suitable (i.e., shorter) for high temperature treatments in both early and late lactation. Relative to multiparous cows, primiparous cows, on average, yielded milk with shorter rennet coagulation time and longer heat coagulation time. Milk from the evening milking session had shorter rennet coagulation time and greater curd firmness, as well as lower heat coagulation time and lower pH compared with milk from the morning session. Jersey cows, on average, yielded milk more suitable for cheese production rather than for milk powder production. When protein concentration was included in the model, the improvement of milk coagulation properties toward the end of lactation was no longer apparent. Results from the present study may aid in decision-making for milk manufacturing, especially in countries characterized by a seasonal supply of fresh milk.


Asunto(s)
Lactancia , Leche/química , Animales , Cruzamiento , Caseínas , Bovinos , Queso , Femenino
18.
Animal ; 11(1): 15-23, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27330040

RESUMEN

Information on the genetic diversity and population structure of cattle breeds is useful when deciding the most optimal, for example, crossbreeding strategies to improve phenotypic performance by exploiting heterosis. The present study investigated the genetic diversity and population structure of the most prominent dairy and beef breeds used in Ireland. Illumina high-density genotypes (777 962 single nucleotide polymorphisms; SNPs) were available on 4623 purebred bulls from nine breeds; Angus (n=430), Belgian Blue (n=298), Charolais (n=893), Hereford (n=327), Holstein-Friesian (n=1261), Jersey (n=75), Limousin (n=943), Montbéliarde (n=33) and Simmental (n=363). Principal component analysis revealed that Angus, Hereford, and Jersey formed non-overlapping clusters, representing distinct populations. In contrast, overlapping clusters suggested geographical proximity of origin and genetic similarity between Limousin, Simmental and Montbéliarde and to a lesser extent between Holstein, Friesian and Belgian Blue. The observed SNP heterozygosity averaged across all loci was 0.379. The Belgian Blue had the greatest mean observed heterozygosity (HO=0.389) among individuals within breed while the Holstein-Friesian and Jersey populations had the lowest mean heterozygosity (HO=0.370 and 0.376, respectively). The correlation between the genomic-based and pedigree-based inbreeding coefficients was weak (r=0.171; P<0.001). Mean genomic inbreeding estimates were greatest for Jersey (0.173) and least for Hereford (0.051). The pair-wise breed fixation index (F st) ranged from 0.049 (Limousin and Charolais) to 0.165 (Hereford and Jersey). In conclusion, substantial genetic variation exists among breeds commercially used in Ireland. Thus custom-mating strategies would be successful in maximising the exploitation of heterosis in crossbreeding strategies.


Asunto(s)
Bovinos/genética , Variación Genética , Animales , Cruzamiento , Bovinos/clasificación , Genoma , Genómica , Genotipo , Heterocigoto , Endogamia , Masculino , Linaje , Polimorfismo de Nucleótido Simple , Reproducción
19.
J Dairy Sci ; 99(5): 4056-4070, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26947296

RESUMEN

Knowledge of animal-level and herd-level energy intake, energy balance, and feed efficiency affect day-to-day herd management strategies; information on these traits at an individual animal level is also useful in animal breeding programs. A paucity of data (especially at the individual cow level), of feed intake in particular, hinders the inclusion of such attributes in herd management decision-support tools and breeding programs. Dairy producers have access to an individual cow milk sample at least once daily during lactation, and consequently any low-cost phenotyping strategy should consider exploiting measureable properties in this biological sample, reflecting the physiological status and performance of the cow. Infrared spectroscopy is the study of the interaction of an electromagnetic wave with matter and it is used globally to predict milk quality parameters on routinely acquired individual cow milk samples and bulk tank samples. Thus, exploiting infrared spectroscopy in next-generation phenotyping will ensure potentially rapid application globally with a negligible additional implementation cost as the infrastructure already exists. Fourier-transform infrared spectroscopy (FTIRS) analysis is already used to predict milk fat and protein concentrations, the ratio of which has been proposed as an indicator of energy balance. Milk FTIRS is also able to predict the concentration of various fatty acids in milk, the composition of which is known to change when body tissue is mobilized; that is, when the cow is in negative energy balance. Energy balance is mathematically very similar to residual energy intake (REI), a suggested measure of feed efficiency. Therefore, the prediction of energy intake, energy balance, and feed efficiency (i.e., REI) from milk FTIRS seems logical. In fact, the accuracy of predicting (i.e., correlation between predicted and actual values; root mean square error in parentheses) energy intake, energy balance, and REI from milk FTIRS in dairy cows was 0.88 (20.0MJ), 0.78 (18.6MJ), and 0.63 (22.0MJ), respectively, based on cross-validation. These studies, however, are limited to results from one research group based on data from 2 contrasting production systems in the United Kingdom and Ireland and would need to be replicated, especially in a range of production systems because the prediction equations are not accurate when the variability used in validation is not represented in the calibration data set. Heritable genetic variation exists for all predicted traits. Phenotypic differences in energy intake also exists among animals stratified based on genetic merit for energy intake predicted from milk FTIRS, substantiating the usefulness of such FTIR-predicted phenotypes not only for day-to-day herd management, but also as part of a breeding strategy to improve cow performance.


Asunto(s)
Bovinos/fisiología , Industria Lechera/métodos , Ingestión de Energía , Metabolismo Energético , Leche/química , Espectroscopía Infrarroja por Transformada de Fourier/veterinaria , Animales , Industria Lechera/instrumentación , Femenino
20.
J Dairy Sci ; 99(5): 3267-3273, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26898278

RESUMEN

The color of milk affects the subsequent color features of the resulting dairy products; milk color is also related to milk fat concentration. The objective of the present study was to quantify the ability of mid-infrared spectroscopy (MIRS) to predict color-related traits in milk samples and to estimate the correlations between these color-related characteristics and traditional milk quality traits. Mid-infrared spectral data were available on 601 milk samples from 529 cows, all of which had corresponding gold standard milk color measures determined using a Chroma Meter (Konica Minolta Sensing Europe, Nieuwegein, the Netherlands); milk color was expressed using the CIELAB uniform color space. Separate prediction equations were developed for each of the 3 color parameters (L*=lightness, a*=greenness, b*=yellowness) using partial least squares regression. Accuracy of prediction was determined using both cross validation on a calibration data set (n=422 to 457 samples) and external validation on a data set of 144 to 152 samples. Moderate accuracy of prediction was achieved for the b* index (coefficient of correlation for external validation=0.72), although poor predictive ability was obtained for both a* and L* indices (coefficient of correlation for external validation of 0.30 and 0.55, respectively). The linear regression coefficient of the gold standard values on the respective MIRS-predicted values of a*, L*, and b* was 0.81, 0.88, and 0.96, respectively; only the regression coefficient on L* was different from 1. The mean bias of prediction (i.e., the average difference between the MIRS-predicted values and gold standard values in external validation) was not different from zero for any of 3 parameters evaluated. A moderate correlation (0.56) existed between the MIRS-predicted L* and b* indices, both of which were weakly correlated with the a* index. Milk fat, protein, and casein were moderately correlated with both the gold standard and MIRS-predicted values for b*. Results from the present study indicate that MIRS data provides an efficient, low-cost screening method to determine the b* color of milk at a population level.


Asunto(s)
Leche/química , Espectrofotometría Infrarroja/veterinaria , Animales , Calibración , Caseínas , Bovinos , Femenino , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...