Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Evol Appl ; 17(2): e13640, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38333553

RESUMEN

Evaluating salmon hatchery supplementation programs requires assessing not only program objectives but identifying potential risks to wild populations as well. Such evaluations can be hampered by difficulty in distinguishing between hatchery- and wild-born returning adults. Here, we conducted 3 years (2011-2013) of experimental hatchery supplementation of sockeye salmon in Auke Lake, Juneau, Alaska where a permanent weir allows sampling and genotyping of every returning adult (2008-2019). We identified both hatchery- and wild-born returning adults with parentage assignment, quantified the productivity (adult offspring/spawner) of hatchery spawners relative to that of wild spawners, and compared run timing, age, and size at age between hatchery- and wild-born adults. Hatchery-spawning females produced from approximately six to 50 times more returning adults than did naturally spawning females. Supplementation had no discernable effect on run timing and limited consequences for size at age, but we observed a distinct shift to younger age at maturity in the hatchery-born individuals in all three brood years. The shift appeared to be driven by hatchery-born fish being more likely to emigrate after one, rather than two, years in the lake but the cause is unknown. In cases when spawning or incubation habitat is limiting sockeye salmon production, hatchery supplementation can be effective for enhancing the number of returning adult fish but not without the risk of phenotypic change in the recipient population, which can be an undesired outcome of hatchery supplementation. This study adds to a growing body of evidence suggesting that phenotypic change within a single generation of captive spawning might be widespread in salmon hatchery programs.

2.
Evol Appl ; 17(2): e13647, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38333554

RESUMEN

As Pacific salmon (Oncorhynchus spp.) decline across much of their range, it is imperative to further develop minimally invasive tools to quantify population abundance. One such advancement, trans-generational genetic mark-recapture (tGMR), uses parentage analysis to estimate the size of wild populations. Our study examined the precision and accuracy of tGMR through a comparison to a traditional mark-recapture estimate for Chilkat River Chinook salmon (O. tshawytscha) in Southeast Alaska. We examined how adult sampling location and timing impact tGMR by comparing estimates derived using samples collected in the lower river mainstem to those using samples obtained in upriver spawning tributaries. Results indicated that tGMR estimates using a representative sample of mainstem adults were most concordant with, and 3% more precise than, the traditional mark-recapture estimate for this stock. Importantly, the timing and location of adult sampling were found to impact abundance estimates, depending on what proportion of the population dies or moves to unsampled areas between downriver and upriver sampling events. Additionally, we identified potential sources of bias in tGMR arising from violations of key assumptions using a novel individual-based modeling framework, parameterized with empirical values from the Chilkat River. Simulations demonstrated that increased reproductive success and sampling selectivity of older, larger individuals, introduced negative bias into tGMR estimates. Our individual-based model offers a customizable and accessible method to identify and quantify these biases in tGMR applications (https://github.com/swrosenbaum/tGMR_simulations). We underscore the critical role of system-specific sampling design considerations in ensuring the precision and accuracy of tGMR projects. This study validates tGMR as a potentially useful tool for improved population enumeration in semelparous species.

3.
Evol Appl ; 16(8): 1472-1482, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37622095

RESUMEN

Alternative life-history tactics are predicted to affect within-population genetic processes but have received little attention. For example, the impact of precocious males on effective population size (N e) has not been quantified directly in Pacific salmon Oncorhynchus spp., even though they can make up a large percentage of the total male spawners. We investigated the contribution of precocial males ("jacks") to N e in a naturally spawning population of Coho Salmon O. kisutch from the Auke Creek watershed in Juneau, Alaska. Mature adults that returned from 2009 to 2019 (~8000 individuals) were genotyped at 259 single-nucleotide polymorphism (SNP) loci for parentage analysis. We used demographic and genetic methods to estimate the effective number of breeders per year (N b). Jack contribution to N b was assessed by comparing values of N b calculated with and without jacks and their offspring. Over a range of N b values (108-406), the average jack contribution to N b from 2009 to 2015 was 12.9% (SE = 3.8%). Jacks consistently made up over 20% of the total male spawners. The presence of jacks did not seem to influence N b/N. The linkage disequilibrium N e estimate was lower than the demographic estimate, possibly due to immigration effects on population genetic processes: based on external marks and parentage data, we estimated that immigrant spawners produced 4.5% of all returning offspring. Our results demonstrate that jacks can influence N b and N e and can make a substantial contribution to population dynamics and conservation of threatened stocks.

4.
Mol Ecol Resour ; 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37254815

RESUMEN

Molecular methods including metabarcoding and quantitative polymerase chain reaction have shown promise for estimating species abundance by quantifying the concentration of genetic material in field samples. However, the relationship between specimen abundance and detectable concentrations of genetic material is often variable in practice. DNA mixture analysis represents an alternative approach to quantify specimen abundance based on the presence of unique alleles in a sample. The DNA mixture approach provides novel opportunities to inform ecology and conservation by estimating the absolute abundance of target taxa through molecular methods; yet, the challenges associated with genotyping many highly variable markers in mixed-DNA samples have prevented its widespread use. To advance molecular approaches for abundance estimation, we explored the utility of microhaplotypes for DNA mixture analysis by applying a 125-marker panel to 1179 Chinook salmon (Oncorhynchus tshawytscha) smolts from the Sacramento-San Joaquin Delta, California, USA. We assessed the accuracy of DNA mixture analysis through a combination of mock mixtures containing DNA from up to 20 smolts and a trophic ecological application enumerating smolts in predator diets. Mock DNA mixtures of up to 10 smolts could reliably be resolved using microhaplotypes, and increasing the panel size would likely facilitate the identification of more individuals. However, while analysis of predator gastrointestinal tract contents indicated DNA mixture analysis could discern the presence of multiple prey items, poor and variable DNA quality prevented accurate genotyping and abundance estimation. Our results indicate that DNA mixture analysis can perform well with high-quality DNA, but methodological improvements in genotyping degraded DNA are necessary before this approach can be used on marginal-quality samples.

5.
R Soc Open Sci ; 10(4): 221271, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37035289

RESUMEN

Despite the wealth of research on Pacific salmon Oncorhynchus spp. life histories there is limited understanding of the lifetime reproductive success of males that spend less time at sea and mature at a smaller size (jacks) than full-size males. Over half of returning male spawners can be jacks in some populations, so it is crucial to understand their contribution to population productivity. We quantified adult-to-adult reproductive success (RS) of jacks and their relative reproductive success (RRS) compared to full-size males in a wild population of coho salmon in the Auke Creek watershed, Juneau, Alaska. We used genetic data from nearly all individuals (approx. 8000) returning to spawn over a decade (2009-2019) to conduct parentage analysis and calculate individual RS. The average adult-to-adult RS of jacks (mean = 0.7 and s.e. = 0.1) was less than that of full-size males (mean = 1.1 and s.e. = 0.1). Jack RRS was consistently below 1.0 but ranged widely (0.23 to 0.96). Despite their lower average success, jacks contributed substantially to the population by siring 23% of the total returning adult offspring (1033 of 4456) produced between 2009 and 2015. Our results imply that jacks can affect evolutionary and population dynamics, and are relevant to the conservation and management of Pacific salmon.

6.
Mol Ecol ; 32(7): 1549-1566, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-34878685

RESUMEN

Understanding how gene flow influences adaptive divergence is important for predicting adaptive responses. Theoretical studies suggest that when gene flow is high, clustering of adaptive genes in fewer genomic regions would protect adaptive alleles from recombination and thus be selected for, but few studies have tested it with empirical data. Here, we used restriction site-associated sequencing to generate genomic data for six fish species with contrasting life histories from six reaches of the Upper Mississippi River System, USA. We used four differentiation-based outlier tests and three genotype-environment association analyses to define neutral single nucleotide polymorphisms (SNPs) and outlier SNPs that were putatively under selection. We then examined the distribution of outlier SNPs along the genome and investigated whether these SNPs were found in genomic islands of differentiation and inversions. We found that gene flow varied among species, and outlier SNPs were clustered more tightly in species with higher gene flow. The two species with the highest overall FST (0.0303-0.0720) and therefore lowest gene flow showed little evidence of clusters of outlier SNPs, with outlier SNPs in these species spreading uniformly across the genome. In contrast, nearly all outlier SNPs in the species with the lowest FST (0.0003) were found in a single large putative inversion. Two other species with intermediate gene flow (FST  ~ 0.0025-0.0050) also showed clustered genomic architectures, with most islands of differentiation clustered on a few chromosomes. Our results provide important empirical evidence to support the hypothesis that increasingly clustered architecture of local adaptation is associated with high gene flow.


Asunto(s)
Flujo Génico , Genética de Población , Animales , Genómica , Adaptación Fisiológica/genética , Genoma , Peces/genética , Polimorfismo de Nucleótido Simple/genética
7.
Evol Appl ; 15(11): 1776-1791, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36426119

RESUMEN

Understanding patterns of genetic structure and adaptive variation in natural populations is crucial for informing conservation and management. Past genetic research using 11 microsatellite loci identified six genetic stocks of lake whitefish (Coregonus clupeaformis) within Lake Michigan, USA. However, ambiguity in genetic stock assignments suggested those neutral microsatellite markers did not provide adequate power for delineating lake whitefish stocks in this system, prompting calls for a genomics approach to investigate stock structure. Here, we generated a dense genomic dataset to characterize population structure and investigate patterns of neutral and adaptive genetic diversity among lake whitefish populations in Lake Michigan. Using Rapture sequencing, we genotyped 829 individuals collected from 17 baseline populations at 197,588 SNP markers after quality filtering. Although the overall pattern of genetic structure was similar to the previous microsatellite study, our genomic data provided several novel insights. Our results indicated a large genetic break between the northwestern and eastern sides of Lake Michigan, and we found a much greater level of population structure on the eastern side compared to the northwestern side. Collectively, we observed five genomic islands of adaptive divergence on five different chromosomes. Each island displayed a different pattern of population structure, suggesting that combinations of genotypes at these adaptive regions are facilitating local adaptation to spatially heterogenous selection pressures. Additionally, we identified a large linkage disequilibrium block of ~8.5 Mb on chromosome 20 that is suggestive of a putative inversion but with a low frequency of the minor haplotype. Our study provides a comprehensive assessment of population structure and adaptive variation that can help inform the management of Lake Michigan's lake whitefish fishery and highlights the utility of incorporating adaptive loci into fisheries management.

8.
Sci Adv ; 8(26): eabn0929, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35776798

RESUMEN

Mining provides resources for people but can pose risks to ecosystems that support cultural keystone species. Our synthesis reviews relevant aspects of mining operations, describes the ecology of salmonid-bearing watersheds in northwestern North America, and compiles the impacts of metal and coal extraction on salmonids and their habitat. We conservatively estimate that this region encompasses nearly 4000 past producing mines, with present-day operations ranging from small placer sites to massive open-pit projects that annually mine more than 118 million metric tons of earth. Despite impact assessments that are intended to evaluate risk and inform mitigation, mines continue to harm salmonid-bearing watersheds via pathways such as toxic contaminants, stream channel burial, and flow regime alteration. To better maintain watershed processes that benefit salmonids, we highlight key windows during the mining governance life cycle for science to guide policy by more accurately accounting for stressor complexity, cumulative effects, and future environmental change.

10.
G3 (Bethesda) ; 10(5): 1553-1561, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32165371

RESUMEN

Many studies exclude loci that exhibit linkage disequilibrium (LD); however, high LD can signal reduced recombination around genomic features such as chromosome inversions or sex-determining regions. Chromosome inversions and sex-determining regions are often involved in adaptation, allowing for the inheritance of co-adapted gene complexes and for the resolution of sexually antagonistic selection through sex-specific partitioning of genetic variants. Genomic features such as these can escape detection when loci with LD are removed; in addition, failing to account for these features can introduce bias to analyses. We examined patterns of LD using network analysis to identify an overlapping chromosome inversion and sex-determining region in chum salmon. The signal of the inversion was strong enough to show up as false population substructure when the entire dataset was analyzed, while the effect of the sex-determining region on population structure was only obvious after restricting analysis to the sex chromosome. Understanding the extent and geographic distribution of inversions is now a critically important part of genetic analyses of natural populations. Our results highlight the importance of analyzing and understanding patterns of LD in genomic dataset and the perils of excluding or ignoring loci exhibiting LD. Blindly excluding loci in LD would have prevented detection of the sex-determining region and chromosome inversion while failing to understand the genomic features leading to high-LD could have resulted in false interpretations of population structure.


Asunto(s)
Oncorhynchus keta , Animales , Inversión Cromosómica , Femenino , Genómica , Desequilibrio de Ligamiento , Masculino , Polimorfismo de Nucleótido Simple , Cromosomas Sexuales
11.
R Soc Open Sci ; 4(7): 170180, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28791145

RESUMEN

Humpback whales are remarkable for the behavioural plasticity of their feeding tactics and the diversity of their diets. Within the last decade at hatchery release sites in Southeast Alaska, humpback whales have begun exploiting juvenile salmon, a previously undocumented prey. The anthropogenic source of these salmon and their important contribution to local fisheries makes the emergence of humpback whale predation a concern for the Southeast Alaska economy. Here, we describe the frequency of observing humpback whales, examine the role of temporal and spatial variables affecting the probability of sighting humpback whales and describe prey capture behaviours at five hatchery release sites. We coordinated twice-daily 15 min observations during the spring release seasons 2010-2015. Using logistic regression, we determined that the probability of occurrence of humpback whales increased after releases began and decreased after releases concluded. The probability of whale occurrence varied among release sites but did not increase significantly over the 6 year study period. Whales were reported to be feeding on juvenile chum, Chinook and coho salmon, with photographic and video records of whales feeding on coho salmon. The ability to adapt to new prey sources may be key to sustaining their population in a changing ocean.

12.
Sci Adv ; 1(4): e1400124, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26601173

RESUMEN

Highly migratory organisms present major challenges to conservation efforts. This is especially true for exploited anadromous fish species, which exhibit long-range dispersals from natal sites, complex population structures, and extensive mixing of distinct populations during exploitation. By tracing the migratory histories of individual Chinook salmon caught in fisheries using strontium isotopes, we determined the relative production of natal habitats at fine spatial scales and different life histories. Although strontium isotopes have been widely used in provenance research, we present a new robust framework to simultaneously assess natal sources and migrations of individuals within fishery harvests through time. Our results pave the way for investigating how fine-scale habitat production and life histories of salmon respond to perturbations-providing crucial insights for conservation.

13.
Evolution ; 59(3): 599-610, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15856702

RESUMEN

Fishes of the genus Prochilodus are ecologically and commercially important, ubiquitous constituents of large river biota in South America. Recent ecologic and demographic studies indicate that these fishes exist in large, stable populations with adult census numbers exceeding one million individuals. Abundance data present a stark contrast to very low levels of genetic diversity (theta) and small effective population sizes (Ne) observed in a mitochondrial (mt) DNA dataset obtained for two species, Prochilodus mariae, and its putative sister taxon, Prochilodus rubrotaeniatus. Both species occupy major river drainages (Orinoco, Essequibo, and Negro) of northeastern South America. Disparity between expectations based on current abundance and life history information and observed genetic data in these lineages could result from historical demographic bottlenecks, or alternatively, natural selection (i.e., a mtDNA selective sweep). To ascertain underlying processes that affect mtDNA diversity in these species we compared theta and Ne estimates obtained from two, unlinked nuclear loci (calmodulin intron-4 and elongation factor-1alpha intron-6) using an approach based on coalescent theory. Genetic diversity and Ne estimated from mtDNA and nuclear sequences were uniformly low in P. rubrotaeniatus from the Rio Negro, suggesting that this population has encountered a historical bottleneck. For all P. mariae populations, theta and Ne based on nuclear sequences were comparable to expectations based on current adult census numbers and were significantly greater than mtDNA estimates, suggesting that a selective mtDNA sweep has occurred in this species. Comparative genetic analysis indicates that a suite of evolutionary processes involving historical demography and natural selection have influenced patterns of genetic variation and speciation in this important Neotropical fish group.


Asunto(s)
Evolución Molecular , Peces/genética , Variación Genética , Genética de Población , Modelos Genéticos , Densidad de Población , Selección Genética , Animales , Calmodulina/genética , Cartilla de ADN , ADN Mitocondrial/genética , Factor 1 de Elongación Peptídica/genética , Filogenia , Polimorfismo Conformacional Retorcido-Simple , Ríos , América del Sur , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...