Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37941256

RESUMEN

For those with upper limb absence, body-powered prostheses continue to be popular for many activities despite being an old technology; these devices can provide both inherent haptic feedback and mechanical robustness. Yet, they can also result in strain and fatigue. Body-powered prosthetic graspers typically consist of a simple lever providing a relatively constant transmission ratio between the input forces from the user's shoulder harness and the grip force of their prosthetic prehensor. In the field of robotic hand design, new continuously varying transmissions demonstrate particular promise in generating a wide range of grasping speeds without sacrificing grip strength. These benefits, if applied to shoulder-driven prosthetic grippers, have the potential to both reduce shoulder exertion and fatigue. This work presents the integration of a continuously variable transmission into a body-powered, voluntary close prosthetic testbed. We introduce the design and validate its performance in a benchtop experiment. We compare constant transmission conditions with a force-dependent, continually varying condition. The device is mounted on a prosthetic emulator for a preliminary wearable demonstration.


Asunto(s)
Miembros Artificiales , Dispositivos Electrónicos Vestibles , Humanos , Diseño de Prótesis , Mano , Fuerza de la Mano
2.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36176122

RESUMEN

Body-powered upper-limb prostheses remain a popular option for those with limb absence due to their passive nature. These devices typically feature a constant transmission ratio between the forces input by the user and the grasp forces output by the prosthetic gripper. Work incorporating continuously variable transmissions into robotic hands has demonstrated a number of benefits in terms of their motion and forces. In this work, we use a custom prosthesis emulator to evaluate the viability of applying variable transmissions to a body-powered prosthetic context. With this haptics test bed, we measured user performance during a grasping and lift task under a variety of transmission ratio conditions and with three different test objects. Results indicate that use of a variable transmission leads to the successful manipulation of a wider variety of objects than the constant transmission ratio systems, while requiring less shoulder motion. Analysis also shows a potential tendency for users to apply higher grasp forces than necessary, when compared to constant transmission conditions. These findings suggest a multifaceted effect on grasp performance with both benefits and drawbacks when considering a variable approach that supports the continued study of variable transmissions in assisted grasping.


Asunto(s)
Miembros Artificiales , Robótica , Mano , Fuerza de la Mano , Humanos , Extremidad Superior
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4936-4940, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33019095

RESUMEN

This paper presents the design of a motor-augmented wrist-driven orthosis (MWDO) for improved grasp articulation for people with C6-C7 spinal cord injuries. Based on the traditional passive, wrist-driven orthotic (WDO) mechanism, the MWDO allows for both body-powered and motorized actuation of the grasping output thus enabling more flexible and dexterous operation. Here, the associated control scheme enables active decoupling of wrist and finger articulation, which can be useful during certain phases of manipulation tasks. An additional modification to the traditional WDO is the integration of a magnetic latch at the Distal Interphalangeal (DIP) joint allowing for improved pinching. These abilities are demonstrated with common activities of daily living (ADL).


Asunto(s)
Traumatismos de la Médula Espinal , Muñeca , Actividades Cotidianas , Fuerza de la Mano , Humanos , Aparatos Ortopédicos , Traumatismos de la Médula Espinal/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA