Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brief Bioinform ; 14(2): 203-12, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22253280

RESUMEN

UNLABELLED: So-called next-generation sequencing (NGS) has provided the ability to sequence on a massive scale at low cost, enabling biologists to perform powerful experiments and gain insight into biological processes. BamView has been developed to visualize and analyse sequence reads from NGS platforms, which have been aligned to a reference sequence. It is a desktop application for browsing the aligned or mapped reads [Ruffalo, M, LaFramboise, T, Koyutürk, M. Comparative analysis of algorithms for next-generation sequencing read alignment. Bioinformatics 2011;27:2790-6] at different levels of magnification, from nucleotide level, where the base qualities can be seen, to genome or chromosome level where overall coverage is shown. To enable in-depth investigation of NGS data, various views are provided that can be configured to highlight interesting aspects of the data. Multiple read alignment files can be overlaid to compare results from different experiments, and filters can be applied to facilitate the interpretation of the aligned reads. As well as being a standalone application it can be used as an integrated part of the Artemis genome browser, BamView allows the user to study NGS data in the context of the sequence and annotation of the reference genome. Single nucleotide polymorphism (SNP) density and candidate SNP sites can be highlighted and investigated, and read-pair information can be used to discover large structural insertions and deletions. The application will also calculate simple analyses of the read mapping, including reporting the read counts and reads per kilobase per million mapped reads (RPKM) for genes selected by the user. AVAILABILITY: BamView and Artemis are freely available software. These can be downloaded from their home pages: http://bamview.sourceforge.net/; http://www.sanger.ac.uk/resources/software/artemis/. Requirements: Java 1.6 or higher.


Asunto(s)
Alineación de Secuencia/estadística & datos numéricos , Programas Informáticos , Animales , Biología Computacional , Gráficos por Computador , Presentación de Datos , Interpretación Estadística de Datos , Bases de Datos Genéticas/estadística & datos numéricos , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Humanos
2.
Proc Natl Acad Sci U S A ; 109(9): 3416-21, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22331916

RESUMEN

Antigenic variation enables pathogens to avoid the host immune response by continual switching of surface proteins. The protozoan blood parasite Trypanosoma brucei causes human African trypanosomiasis ("sleeping sickness") across sub-Saharan Africa and is a model system for antigenic variation, surviving by periodically replacing a monolayer of variant surface glycoproteins (VSG) that covers its cell surface. We compared the genome of Trypanosoma brucei with two closely related parasites Trypanosoma congolense and Trypanosoma vivax, to reveal how the variant antigen repertoire has evolved and how it might affect contemporary antigenic diversity. We reconstruct VSG diversification showing that Trypanosoma congolense uses variant antigens derived from multiple ancestral VSG lineages, whereas in Trypanosoma brucei VSG have recent origins, and ancestral gene lineages have been repeatedly co-opted to novel functions. These historical differences are reflected in fundamental differences between species in the scale and mechanism of recombination. Using phylogenetic incompatibility as a metric for genetic exchange, we show that the frequency of recombination is comparable between Trypanosoma congolense and Trypanosoma brucei but is much lower in Trypanosoma vivax. Furthermore, in showing that the C-terminal domain of Trypanosoma brucei VSG plays a crucial role in facilitating exchange, we reveal substantial species differences in the mechanism of VSG diversification. Our results demonstrate how past VSG evolution indirectly determines the ability of contemporary parasites to generate novel variant antigens through recombination and suggest that the current model for antigenic variation in Trypanosoma brucei is only one means by which these parasites maintain chronic infections.


Asunto(s)
Variación Antigénica/genética , Evolución Molecular , Genoma de Protozoos , Evasión Inmune/genética , Trypanosoma brucei brucei/inmunología , Trypanosoma congolense/inmunología , Trypanosoma vivax/inmunología , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN Protozoario/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Conformación Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Recombinación Genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Trypanosoma brucei brucei/genética , Trypanosoma congolense/genética , Trypanosoma vivax/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/química , Glicoproteínas Variantes de Superficie de Trypanosoma/inmunología
3.
Bioinformatics ; 28(4): 464-9, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22199388

RESUMEN

MOTIVATION: High-throughput sequencing (HTS) technologies have made low-cost sequencing of large numbers of samples commonplace. An explosion in the type, not just number, of sequencing experiments has also taken place including genome re-sequencing, population-scale variation detection, whole transcriptome sequencing and genome-wide analysis of protein-bound nucleic acids. RESULTS: We present Artemis as a tool for integrated visualization and computational analysis of different types of HTS datasets in the context of a reference genome and its corresponding annotation. AVAILABILITY: Artemis is freely available (under a GPL licence) for download (for MacOSX, UNIX and Windows) at the Wellcome Trust Sanger Institute websites: http://www.sanger.ac.uk/resources/software/artemis/.


Asunto(s)
Anotación de Secuencia Molecular , Programas Informáticos , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Transcriptoma
4.
Nucleic Acids Res ; 40(Database issue): D98-108, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22116062

RESUMEN

GeneDB (http://www.genedb.org) is a genome database for prokaryotic and eukaryotic pathogens and closely related organisms. The resource provides a portal to genome sequence and annotation data, which is primarily generated by the Pathogen Genomics group at the Wellcome Trust Sanger Institute. It combines data from completed and ongoing genome projects with curated annotation, which is readily accessible from a web based resource. The development of the database in recent years has focused on providing database-driven annotation tools and pipelines, as well as catering for increasingly frequent assembly updates. The website has been significantly redesigned to take advantage of current web technologies, and improve usability. The current release stores 41 data sets, of which 17 are manually curated and maintained by biologists, who review and incorporate data from the scientific literature, as well as other sources. GeneDB is primarily a production and annotation database for the genomes of predominantly pathogenic organisms.


Asunto(s)
Bases de Datos Genéticas , Genómica , Anotación de Secuencia Molecular , Animales , Artrópodos/genética , Genoma Bacteriano , Genoma de los Helmintos , Genoma de Protozoos , Internet , Vocabulario Controlado
6.
PLoS Negl Trop Dis ; 5(12): e1409, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22180794

RESUMEN

BACKGROUND: Developing intervention strategies for the control of parasitic nematodes continues to be a significant challenge. Genomic and post-genomic approaches play an increasingly important role for providing fundamental molecular information about these parasites, thus enhancing basic as well as translational research. Here we report a comprehensive genome-wide survey of the developmental transcriptome of the human filarial parasite Brugia malayi. METHODOLOGY/PRINCIPAL FINDINGS: Using deep sequencing, we profiled the transcriptome of eggs and embryos, immature (≤3 days of age) and mature microfilariae (MF), third- and fourth-stage larvae (L3 and L4), and adult male and female worms. Comparative analysis across these stages provided a detailed overview of the molecular repertoires that define and differentiate distinct lifecycle stages of the parasite. Genome-wide assessment of the overall transcriptional variability indicated that the cuticle collagen family and those implicated in molting exhibit noticeably dynamic stage-dependent patterns. Of particular interest was the identification of genes displaying sex-biased or germline-enriched profiles due to their potential involvement in reproductive processes. The study also revealed discrete transcriptional changes during larval development, namely those accompanying the maturation of MF and the L3 to L4 transition that are vital in establishing successful infection in mosquito vectors and vertebrate hosts, respectively. CONCLUSIONS/SIGNIFICANCE: Characterization of the transcriptional program of the parasite's lifecycle is an important step toward understanding the developmental processes required for the infectious cycle. We find that the transcriptional program has a number of stage-specific pathways activated during worm development. In addition to advancing our understanding of transcriptome dynamics, these data will aid in the study of genome structure and organization by facilitating the identification of novel transcribed elements and splice variants.


Asunto(s)
Brugia Malayi/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Animales , Brugia Malayi/crecimiento & desarrollo , Brugia Malayi/metabolismo , Análisis por Conglomerados , Biología Computacional , Femenino , Regulación del Desarrollo de la Expresión Génica , Gerbillinae , Estadios del Ciclo de Vida/genética , Masculino , Microfilarias/genética , Microfilarias/metabolismo , ARN de Helminto/análisis , ARN de Helminto/genética , ARN Mensajero/análisis , ARN Mensajero/genética , Transcriptoma
7.
PLoS Negl Trop Dis ; 4(4): e658, 2010 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-20404998

RESUMEN

BACKGROUND: Trypanosoma brucei gambiense is the causative agent of chronic Human African Trypanosomiasis or sleeping sickness, a disease endemic across often poor and rural areas of Western and Central Africa. We have previously published the genome sequence of a T. b. brucei isolate, and have now employed a comparative genomics approach to understand the scale of genomic variation between T. b. gambiense and the reference genome. We sought to identify features that were uniquely associated with T. b. gambiense and its ability to infect humans. METHODS AND FINDINGS: An improved high-quality draft genome sequence for the group 1 T. b. gambiense DAL 972 isolate was produced using a whole-genome shotgun strategy. Comparison with T. b. brucei showed that sequence identity averages 99.2% in coding regions, and gene order is largely collinear. However, variation associated with segmental duplications and tandem gene arrays suggests some reduction of functional repertoire in T. b. gambiense DAL 972. A comparison of the variant surface glycoproteins (VSG) in T. b. brucei with all T. b. gambiense sequence reads showed that the essential structural repertoire of VSG domains is conserved across T. brucei. CONCLUSIONS: This study provides the first estimate of intraspecific genomic variation within T. brucei, and so has important consequences for future population genomics studies. We have shown that the T. b. gambiense genome corresponds closely with the reference, which should therefore be an effective scaffold for any T. brucei genome sequence data. As VSG repertoire is also well conserved, it may be feasible to describe the total diversity of variant antigens. While we describe several as yet uncharacterized gene families with predicted cell surface roles that were expanded in number in T. b. brucei, no T. b. gambiense-specific gene was identified outside of the subtelomeres that could explain the ability to infect humans.


Asunto(s)
Genoma de Protozoos , Polimorfismo Genético , Análisis de Secuencia de ADN , Trypanosoma brucei gambiense/genética , Tripanosomiasis Africana/parasitología , Animales , Secuencia Conservada , ADN Protozoario/química , ADN Protozoario/genética , Orden Génico , Humanos , Datos de Secuencia Molecular , Sintenía
8.
Genome Res ; 19(12): 2231-44, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19745113

RESUMEN

Candida dubliniensis is the closest known relative of Candida albicans, the most pathogenic yeast species in humans. However, despite both species sharing many phenotypic characteristics, including the ability to form true hyphae, C. dubliniensis is a significantly less virulent and less versatile pathogen. Therefore, to identify C. albicans-specific genes that may be responsible for an increased capacity to cause disease, we have sequenced the C. dubliniensis genome and compared it with the known C. albicans genome sequence. Although the two genome sequences are highly similar and synteny is conserved throughout, 168 species-specific genes are identified, including some encoding known hyphal-specific virulence factors, such as the aspartyl proteinases Sap4 and Sap5 and the proposed invasin Als3. Among the 115 pseudogenes confirmed in C. dubliniensis are orthologs of several filamentous growth regulator (FGR) genes that also have suspected roles in pathogenesis. However, the principal differences in genomic repertoire concern expansion of the TLO gene family of putative transcription factors and the IFA family of putative transmembrane proteins in C. albicans, which represent novel candidate virulence-associated factors. The results suggest that the recent evolutionary histories of C. albicans and C. dubliniensis are quite different. While gene families instrumental in pathogenesis have been elaborated in C. albicans, C. dubliniensis has lost genomic capacity and key pathogenic functions. This could explain why C. albicans is a more potent pathogen in humans than C. dubliniensis.


Asunto(s)
Candida albicans , Candida , Proteínas Fúngicas , Genoma Fúngico , Genómica , Factores de Virulencia , Candida/clasificación , Candida/genética , Candida/patogenicidad , Candida albicans/genética , Candida albicans/patogenicidad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Orden Génico , Humanos , Hifa/genética , Hifa/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie , Sintenía , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...