Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 35(30)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38636478

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid plaques in the brain. The toxicity of amyloid to neuronal cell surfaces arises from interactions between small intermediate aggregates, namely amyloid oligomers, and the cell membrane. The nature of these interactions changes with age and disease progression. In our previous work, we demonstrated that both membrane composition and nanoscale structure play crucial roles in amyloid toxicity, and that membrane models mimicking healthy neuron were less affected by amyloid than model membranes mimicking AD neuronal membranes. This understanding introduces the possibility of modifying membrane properties with membrane-active molecules, such as melatonin, to protect them from amyloid-induced damage. In this study, we employed atomic force microscopy and localized surface plasmon resonance to investigate the protective effects of melatonin. We utilized synthetic lipid membranes that mimic the neuronal cellular membrane at various stages of AD and explored their interactions with amyloid-ß(1-42) in the presence of melatonin. Our findings reveal that the early diseased membrane model is particularly vulnerable to amyloid binding and subsequent damage. However, melatonin exerts its most potent protective effect on this early-stage membrane. These results suggest that melatonin could act at the membrane level to alleviate amyloid toxicity, offering the most protection during the initial stages of AD.


Asunto(s)
Péptidos beta-Amiloides , Melatonina , Microscopía de Fuerza Atómica , Resonancia por Plasmón de Superficie , Melatonina/farmacología , Melatonina/química , Microscopía de Fuerza Atómica/métodos , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Membrana Dobles de Lípidos/química , Enfermedad de Alzheimer/metabolismo , Humanos , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/química
2.
Nanoscale ; 13(32): 13905, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34477664

RESUMEN

Correction for 'Extending nanoscale patterning with multipolar surface plasmon resonances' by Issam Kherbouche et al., Nanoscale, 2021, 13, 11051-11057, DOI: .

3.
Stem Cells Dev ; 30(5): 247-264, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33403929

RESUMEN

The secretome of mesenchymal stromal cells (MSCs) is enriched for biotherapeutic effectors contained within and independent of extracellular vesicles (EVs) that may support tissue regeneration as an injectable agent. We have demonstrated that the intrapancreatic injection of concentrated conditioned media (CM) produced by bone marrow MSC supports islet regeneration and restored glycemic control in hyperglycemic mice, ultimately providing a platform to elucidate components of the MSC secretome. Herein, we extend these findings using human pancreas-derived MSC (Panc-MSC) as "biofactories" to enrich for tissue regenerative stimuli housed within distinct compartments of the secretome. Specifically, we utilized 100 kDa ultrafiltration as a simple method to debulk protein mass and to enrich for EVs while concentrating the MSC secretome into an injectable volume for preclinical assessments in murine models of blood vessel and islet regeneration. EV enrichment (EV+) was validated using nanoscale flow cytometry and atomic force microscopy, in addition to the detection of classical EV markers CD9, CD81, and CD63 using label-free mass spectrometry. EV+ CM was predominately enriched with mediators of wound healing and epithelial-to-mesenchymal transition that supported functional regeneration in mesenchymal and nonmesenchymal tissues. For example, EV+ CM supported human microvascular endothelial cell tubule formation in vitro and enhanced the recovery of blood perfusion following intramuscular injection in nonobese diabetic/severe combined immunodeficiency mice with unilateral hind limb ischemia. Furthermore, EV+ CM increased islet number and ß cell mass, elevated circulating insulin, and improved glycemic control following intrapancreatic injection in streptozotocin-treated mice. Collectively, this study provides foundational evidence that Panc-MSC, readily propagated from the subculture of human islets, may be utilized for regenerative medicine applications.


Asunto(s)
Factores Biológicos/farmacología , Vesículas Extracelulares/química , Células Madre Mesenquimatosas/química , Páncreas/fisiología , Regeneración/efectos de los fármacos , Secretoma/química , Animales , Factores Biológicos/administración & dosificación , Factores Biológicos/aislamiento & purificación , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/fisiología , Células Cultivadas , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Humanos , Hiperglucemia/sangre , Hiperglucemia/inducido químicamente , Hiperglucemia/prevención & control , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Microscopía de Fuerza Atómica , Páncreas/citología , Estreptozocina , Ultrafiltración/métodos
4.
Nanoscale Adv ; 3(9): 2501-2507, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-36134146

RESUMEN

Surface plasmon-mediated chemical reactions are of great interest for a variety of applications ranging from micro- and nanoscale device fabrication to chemical reactions of societal interest for hydrogen production or carbon reduction. In this work, a crosshair-like nanostructure is investigated due to its ability to induce local enhancement of the local electromagnetic field at three distinct wavelengths corresponding to three plasmon resonances. The structures are irradiated in the presence of a solution containing diazonium salts at wavelengths that match the resonance positions at 532 nm, 632.8 nm, and 800 nm. The resulting grafting shows polarization and wavelength-dependent growth patterns at the nanoscale. The plasmon-mediated reactions over arrays of the crosshair structures are further investigated using scanning electron microscopy and supported by finite domain time domain modelling revealing wavelength and polarization specific reactions. Such an approach enables nanoscale molecular printing using light source opening multiplexing applications where different analytes can be grafted under distinct opto-geometric conditions.

5.
Polymers (Basel) ; 12(4)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32224867

RESUMEN

Osteoarthritis (OA) is a debilitating joint disorder affecting more than 240 million people. There is no disease modifying therapeutic, and drugs that are used to alleviate OA symptoms result in side effects. Recent research indicates that inhibition of peroxisome proliferator-activated receptor δ (PPARδ) in cartilage may attenuate the development or progression of OA. PPARδ antagonists such as GSK3787 exist, but would benefit from delivery to joints to avoid side effects. Described here is the loading of GSK3787 into poly(ester amide) (PEA) particles. The particles contained 8 wt.% drug and had mean diameters of about 600 nm. Differential scanning calorimetry indicated the drug was in crystalline domains in the particles. Atomic force microscopy was used to measure the Young's moduli of individual particles as 2.8 MPa. In vitro drug release studies showed 11% GSK3787 was released over 30 days. Studies in immature murine articular cartilage (IMAC) cells indicated low toxicity from the drug, empty particles, and drug-loaded particles and that the particles were not taken up by the cells. Ex vivo studies on murine joints showed that the particles could be injected into the joint space and resided there for at least 7 days. Overall, these results indicate that GSK3787-loaded PEA particles warrant further investigation as a delivery system for potential OA therapy.

6.
Nat Nanotechnol ; 14(10): 922-923, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31527840
7.
Opt Lett ; 44(15): 3865-3868, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31368988

RESUMEN

Infrared (IR) antennas made of metallic nanostructures are widely tunable from the near- to the far-IR range. They can be utilized for a variety of applications such as light harvesting and photonic filters, and their structural linear or circular anisotropy can be exploited to further enhance the sensitivity of spectroscopic measurements. Here gold dendritic fractal structures that were optimized to exhibit multiple resonances in the mid-IR range were characterized using a scattering-type scanning near-field optical IR microscope. The spatially resolved IR maps associated with the individual modes serve as a basis to understand the mode evolution between each fractal generation.

8.
ACS Sens ; 3(2): 334-341, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29318873

RESUMEN

A plasmonic sensing system that allows the excitation of localized surface plasmon resonance (LSPR) by individual waveguide modes is presented conceptually and experimentally. Any change in the local environment of the gold nanoparticles (AuNPs) alters the degree of coupling between LSPR and a polymer slab waveguide, which then modulates the transmission-output signal. In comparison to conventional LSPR sensors, this system is less susceptible to optical noise and positional variation of signals. Moreover, it enables more freedom in the exploitation of plasmonic hot spots with both transverse electric (TE) and transverse magnetic (TM) modes. Through real-time measurement, it is demonstrated that the current sensing system is more sensitive than comparable optical fiber plasmonic sensors. The highest normalized bulk sensitivity (7.744 RIU-1) is found in the TM1 mode. Biosensing with the biotin-streptavidin system shows that the detection limit is on the order of 10-14 M of streptavidin. With further optimization, this sensing system can easily be mass-produced and incorporated into high throughput screening devices, detecting a variety of chemical and biological analytes via immobilization of the appropriate recognition sites.


Asunto(s)
Técnicas Biosensibles/métodos , Oro/química , Nanopartículas del Metal/química , Resonancia por Plasmón de Superficie/métodos , Técnicas Biosensibles/instrumentación , Biotina/análisis , Límite de Detección , Fibras Ópticas , Estreptavidina/análisis , Resonancia por Plasmón de Superficie/instrumentación
9.
ACS Omega ; 3(7): 7269-7277, 2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458887

RESUMEN

Thin and ultraflat conductive surfaces are of particular interest to use as substrates for tip-enhanced spectroscopy applications. Tip-enhanced spectroscopy exploits the excitation of a localized surface plasmon resonance mode at the apex of a metallized atomic force microscope tip, confining and enhancing the local electromagnetic field by several orders of magnitude. This allows for nanoscale mapping of the surface with high spatial resolution and surface sensitivity, as demonstrated when coupled to local Raman measurements. In gap-mode tip-enhanced spectroscopy, the specimen of interest is deposited onto a flat metallic surface and probed by a metallic tip, allowing for further electromagnetic confinement and subsequent enhancement. We investigate here a geometry where a gold tip is used in conjunction with a silver nanoplate, thus forming a heterometallic platform for local enhancement. When irradiated, a plasmon-mediated reaction is triggered at the tip-substrate junction due to the enhanced electric field and the transfer of hot electrons from the tip to the nanoplate. This resulting nanoscale reaction appears to be sufficient to ablate the thin silver plates even under weak laser intensity. Such an approach may be further exploited for patterning metallic nanostructures or photoinduced chemical reactions at metal surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA