Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Virol Methods ; 264: 11-17, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30381240

RESUMEN

Hepatitis C Virus c33, a recombinant protein comprising residues 1192-1457 of NS3 helicase, has been a mainstay of HCV serology for decades. With seven unpaired cysteines, seroreactivity of E. coli expressed c33 is dependant on reductants. While engineering a c33 replacement for new anti-HCV serological tests, we sought to reduce oxidation sensitivity, a liability for immunodiagnostic reagent stability. A series of cysteine-to-serine substituted variants of a c33-like antigen was constructed and evaluated for reactivity against a panel of HCV-positive sera. Several variants were essentially nonreactive while others exhibited reactivity similar to or better than the wild-type construct. One demonstrated equivalent potency to wild-type but also diminished DTT dependence. To explore enhanced anti-NS3 reactivity, we constructed and examined an expanded series of antigens comprising individual helicase domains, the full-length helicase, additional cysteine-to-serine variants, and variants at positions critical to catalytic activity. Immunoassays using these latter NS3 helicase recombinants demonstrated that domain 1 possessed significantly more seroreactivity than previously believed, that the use of soluble full-length helicase protein enhanced sensitivity by several-fold over c33, and that anti-NS3 helicase seroreactivity was further enhanced by the introduction of point mutations which altered the catalytic activity or oxidation sensitivity of the antigen.


Asunto(s)
ADN Helicasas/genética , ADN Helicasas/inmunología , Hepacivirus/enzimología , Hepacivirus/genética , Pruebas Serológicas , Proteínas no Estructurales Virales/genética , Anticuerpos Antivirales/sangre , Cisteína/genética , Cisteína/inmunología , ADN Helicasas/metabolismo , Escherichia coli/genética , Ingeniería Genética , Hepacivirus/inmunología , Humanos , Pruebas Inmunológicas , Mutación Puntual , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Seroconversión , Proteínas no Estructurales Virales/inmunología
2.
Cell Cycle ; 6(16): 2019-30, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17721080

RESUMEN

The ATR family of checkpoint kinases is essential for an appropriate response to genomic insults in eukaryotes. Included in this family are Mei-41 in Drosophila, Mec1 inS. cerevisiae, Rad3 in S. pombe, and ATR in vertebrates. These large kinases phosphorylateand modify multiple cell cycle and checkpoint factors, leading to cell cycle arrest, DNA repair, and induction of apoptosis. The catalytic domain of all ATR family members comprises only a fraction of the total protein. Here, we show that the non-catalytic portion of ATR has a conserved function in the checkpoint response. Expression of either wild type or various kinase defective forms of Xenopus ATR (XATR) in S. cerevisiae mec1 mutants suppresses the checkpoint defect and induces a DNA damage dependent mitotic cell cycle arrest. This suppression requires the presence of yeast Ddc2 and Rad9 but functions independently of Rad9 modification and Rad53 activation. Our results indicate that XATR is not functioning through the established mitotic checkpoint pathways. Instead, we find that the XATR suppression of the mec1 mutant checkpoint defect requires the spindle checkpoint factors Mad1 and Mad2, suggesting a role for XATR in the spindle assembly checkpoint. Finally, we show that a yeast strain expressing a truncated, kinase domain deleted form of mec1 from the endogenous locus is partially checkpoint proficient and induces a mitotic cell cycle arrest in a Mad2 dependent manner. Thus, the link between the non-catalytic region of the ATR kinase family and the spindle checkpoint pathway is conserved.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Western Blotting , Catálisis , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2 , Daño del ADN , Proteínas de Drosophila/genética , Péptidos y Proteínas de Señalización Intracelular , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
3.
Mol Cell Biol ; 24(22): 9968-85, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15509799

RESUMEN

The checkpoint kinase Cds1 (Chk2) plays a key role in cell cycle checkpoint responses with functions in cell cycle arrest, DNA repair, and induction of apoptosis. Proper regulation of Cds1 is essential for appropriate cellular responses to checkpoint-inducing insults. While the kinase ATM has been shown to be important in the regulation of human Cds1 (hCds1), here we report that the kinases ATR and DNA-dependent protein kinase (DNA-PK) play more significant roles in the regulation of Xenopus Cds1 (XCds1). Under normal cell cycle conditions, nonactivated XCds1 constitutively associates with a Xenopus ATR complex. The association of XCds1 with this complex does not require a functional forkhead activation domain but does require a putative SH3 binding region that is found in XCds1. In response to double-stranded DNA ends, the amino terminus of XCds1 is rapidly phosphorylated in a sequential pattern. First DNA-PK phosphorylates serine 39, a site not previously recognized as important in Cds1 regulation. Xenopus ATM, ATR, and/or DNA-PK then phosphorylate three consensus serine/glutamine sites. Together, these phosphorylations have the dual function of inducing dissociation from the ATR complex and independently promoting the full activation of XCds1. Thus, the checkpoint-mediated activation of XCds1 requires phosphorylation by multiple phosphoinositide 3-kinase-related kinases, protein-protein dissociation, and autophosphorylation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2 , ADN/química , ADN/genética , ADN/metabolismo , Proteína Quinasa Activada por ADN , Proteínas de Unión al ADN/genética , Femenino , Técnicas In Vitro , Modelos Biológicos , Datos de Secuencia Molecular , Oocitos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenopus/genética , Proteínas de Xenopus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA