Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Biochem ; 479(2): 233-242, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37027096

RESUMEN

Abdominal aortic aneurysms (AAA) result from maladaptive remodeling of the vascular wall and reduces structural integrity. Angiotensin II (AngII) infusion has become a standard laboratory model for studying AAA initiation and progression. We determined the different vasoactive responses of various mouse arteries to Ang II. Ex vivo isometric tension analysis was conducted on 18-week-old male C57BL/6 mice (n = 4) brachiocephalic arteries (BC), iliac arteries (IL), and abdominal (AA) and thoracic aorta (TA). Arterial rings were mounted between organ hooks, gently stretched and an AngII dose response was performed. Rings were placed in 4% paraformaldehyde for immunohistochemistry analysis to quantify peptide expression of angiotensin type 1 (AT1R) and 2 receptors (AT2R) in the endothelium, media, and adventitia. Results from this study demonstrated vasoconstriction responses in IL were significantly higher at all AngII doses when compared to BC, and TA and AA responses (maximum constriction-IL: 68.64 ± 5.47% vs. BC: 1.96 ± 1.00%; TA: 3.13 ± 0.16% and AA: 2.75 ± 1.77%, p < 0.0001). Expression of AT1R was highest in the endothelium of IL (p < 0.05) and in the media and (p < 0.05) adventitia (p < 0.05) of AA. In contrast, AT2R expression was highest in endothelium (p < 0.05), media (p < 0.01, p < 0.05) and adventitia of TA. These results suggest that mouse arteries display different vasoactive responses to AngII, and the exaggerated response in IL arteries may play a role during AAA development.


Asunto(s)
Aneurisma de la Aorta Abdominal , Aneurisma de la Aorta , Hormonas Peptídicas , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Arteria Ilíaca , Angiotensina II/farmacología , Arterias , Aneurisma de la Aorta Abdominal/inducido químicamente , Angiotensina I
2.
Mol Cell Biochem ; 478(12): 2907-2916, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37004639

RESUMEN

The renin angiotensin system is a key regulator of blood pressure homeostasis. Angiotensin type 1 (AT1R) and 2 receptors (AT2R) have been investigated as targets for cisplatin-induced acute kidney injury; however, their therapeutic potential remains inconclusive. This pilot study aimed to determined the effect that acute cisplatin treatment had on angiotensin II (AngII)-induced contraction in blood vessels and expression profiles of AT1R and AT2R in mouse arteries and kidneys. Male C57BL/6 mice at 18 week of age (n = 8) were treated with vehicle or bolus dose of cisplatin (12.5 mg/kg). Thoracic aorta (TA), adnominal aorta (AA), brachiocephalic arteries (BC), iliac arteries (IL) and kidneys were collected for isometric tension and immunohistochemistry analysis. Cisplatin treatment reduced IL contraction to AngII at all doses (p < 0.01, p < 0.001, p < 0.0001); however, AngII did not induce contraction in TA, AA or BC in either treatment group. Following cisplatin treatment, AT1R expression was significantly upregulated in the media of TA (p < 0.0001) and AA (p < 0.0001), and in the endothelium (p < 0.05) media (p < 0.0001) and adventitia (p < 0.01) of IL. Cisplatin treatment significantly reduced AT2R expression in the endothelium (p < 0.05) and media (p < 0.05) of TA. In renal tubules, both AT1R (p < 0.01) and AT2R (p < 0.05) were increased following cisplatin treatment. Herein, we report that cisplatin reduces AngII-mediated contraction in IL and may be explained by an absence of normal counterregulatory expression of AT1R and AT2R, indicating other factors are involved.


Asunto(s)
Angiotensina II , Cisplatino , Masculino , Ratones , Animales , Angiotensina II/farmacología , Angiotensina II/metabolismo , Cisplatino/farmacología , Proyectos Piloto , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Ratones Endogámicos C57BL
3.
Cancers (Basel) ; 13(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805488

RESUMEN

Administration of the chemotherapeutic agent cisplatin leads to acute kidney injury (AKI). Cisplatin-induced AKI (CIAKI) has a complex pathophysiological map, which has been linked to cellular uptake and efflux, apoptosis, vascular injury, oxidative and endoplasmic reticulum stress, and inflammation. Despite research efforts, pharmaceutical interventions, and clinical trials spanning over several decades, a consistent and stable pharmacological treatment option to reduce AKI in patients receiving cisplatin remains unavailable. This has been predominately linked to the incomplete understanding of CIAKI pathophysiology and molecular mechanisms involved. Herein, we detail the extensively known pathophysiology of cisplatin-induced nephrotoxicity that manifests and the variety of pharmacological and genetic alteration studies that target them.

4.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498183

RESUMEN

The occurrence of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for coronavirus disease 2019 (COVD-19), represents a catastrophic threat to global health. Protruding from the viral surface is a densely glycosylated spike (S) protein, which engages angiotensin-converting enzyme 2 (ACE2) to mediate host cell entry. However, studies have reported viral susceptibility in intra- and extrapulmonary immune and non-immune cells lacking ACE2, suggesting that the S protein may exploit additional receptors for infection. Studies have demonstrated interactions between S protein and innate immune system, including C-lectin type receptors (CLR), toll-like receptors (TLR) and neuropilin-1 (NRP1), and the non-immune receptor glucose regulated protein 78 (GRP78). Recognition of carbohydrate moieties clustered on the surface of the S protein may drive receptor-dependent internalization, accentuate severe immunopathological inflammation, and allow for systemic spread of infection, independent of ACE2. Furthermore, targeting TLRs, CLRs, and other receptors (Ezrin and dipeptidyl peptidase-4) that do not directly engage SARS-CoV-2 S protein, but may contribute to augmented anti-viral immunity and viral clearance, may represent therapeutic targets against COVID-19.


Asunto(s)
COVID-19/metabolismo , COVID-19/patología , SARS-CoV-2/fisiología , Internalización del Virus , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/inmunología , Progresión de la Enfermedad , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/inmunología , Proteínas de Choque Térmico/metabolismo , Interacciones Huésped-Patógeno , Humanos , Lectinas Tipo C/inmunología , Lectinas Tipo C/metabolismo , Neuropilina-1/inmunología , Neuropilina-1/metabolismo , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo
5.
Nutrients ; 12(9)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957558

RESUMEN

Taurine is a non-protein amino acid that is expressed in the majority of animal tissues. With its unique sulfonic acid makeup, taurine influences cellular functions, including osmoregulation, antioxidation, ion movement modulation, and conjugation of bile acids. Taurine exerts anti-inflammatory effects that improve diabetes and has shown benefits to the cardiovascular system, possibly by inhibition of the renin angiotensin system. The beneficial effects of taurine are reviewed.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Taurina/uso terapéutico , Animales , Diabetes Mellitus , Humanos , Obesidad , Taurina/deficiencia
6.
Clin Exp Pharmacol Physiol ; 47(5): 751-758, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31901211

RESUMEN

The renin angiotensin system (RAS) regulates fluid balance, blood pressure and maintains vascular tone. The potent vasoconstrictor angiotensin II (Ang II) produced by angiotensin-converting enzyme (ACE) comprises the classical RAS. The non-classical RAS involves the conversion of Ang II via ACE2 into the vasodilator Ang (1-7) to counterbalance the effects of Ang II. Furthermore, ACE2 converts AngA into another vasodilator named alamandine. The over activation of the classical RAS (increased vasoconstriction) and depletion of the non-classical RAS (decreased vasodilation) results in vascular dysfunction. Vascular dysfunction is the leading cause of atherosclerosis and cardiovascular disease (CVD). Additionally, local RAS is expressed in various tissues and regulates cellular functions. RAS dysregulation is involved in other several diseases such as inflammation, renal dysfunction and even cancer growth. An approach in restoring vascular dysfunction and other pathological diseases is to either increase the activity of ACE2 or reduce the effect of the classical RAS by counterbalancing Ang II effects. The antitrypanosomal agent, diminazene aceturate (DIZE), is one approach in activating ACE2. DIZE has been shown to exert beneficial effects in CVD experimental models of hypertension, myocardial infarction, type 1 diabetes and atherosclerosis. Thus, this review focuses on DIZE and its effect in several tissues such as blood vessels, cardiac, renal, immune and cancer cells.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Diminazeno/análogos & derivados , Activadores de Enzimas/uso terapéutico , Sistema Renina-Angiotensina/efectos de los fármacos , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/enzimología , Enfermedades Cardiovasculares/fisiopatología , Diminazeno/efectos adversos , Diminazeno/uso terapéutico , Activación Enzimática , Activadores de Enzimas/efectos adversos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...