Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 20(7): 924-933, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38942968

RESUMEN

Keratinicyclins and keratinimicins are recently discovered glycopeptide antibiotics. Keratinimicins show broad-spectrum activity against Gram-positive bacteria, while keratinicyclins form a new chemotype by virtue of an unusual oxazolidinone moiety and exhibit specific antibiosis against Clostridioides difficile. Here we report the mechanism of action of keratinicyclin B (KCB). We find that steric constraints preclude KCB from binding peptidoglycan termini. Instead, KCB inhibits C. difficile growth by binding wall teichoic acids (WTAs) and interfering with cell wall remodeling. A computational model, guided by biochemical studies, provides an image of the interaction of KCB with C. difficile WTAs and shows that the same H-bonding framework used by glycopeptide antibiotics to bind peptidoglycan termini is used by KCB for interacting with WTAs. Analysis of KCB in combination with vancomycin (VAN) shows highly synergistic and specific antimicrobial activity, and that nanomolar combinations of the two drugs are sufficient for complete growth inhibition of C. difficile, while leaving common commensal strains unaffected.


Asunto(s)
Antibacterianos , Clostridioides difficile , Pruebas de Sensibilidad Microbiana , Clostridioides difficile/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Vancomicina/farmacología , Vancomicina/química , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Ácidos Teicoicos/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano/química , Quimioterapia Combinada , Péptidos Cíclicos , Lipopéptidos
2.
ACS Chem Biol ; 18(8): 1713-1718, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37555759

RESUMEN

Nitration reactions are crucial for many industrial syntheses; however, current protocols lack site specificity and employ hazardous chemicals. The noncanonical cytochrome P450 enzymes RufO and TxtE catalyze the only known direct aromatic nitration reactions in nature, making them attractive model systems for the development of analogous biocatalytic and/or biomimetic reactions that proceed under mild conditions. While the associated mechanism has been well-characterized in TxtE, much less is known about RufO. Herein we present the first structure of RufO alongside a series of computational and biochemical studies investigating its unusual reactivity. We demonstrate that free l-tyrosine is not readily accepted as a substrate despite previous reports to the contrary. Instead, we propose that RufO natively modifies l-tyrosine tethered to the peptidyl carrier protein of a nonribosomal peptide synthetase encoded by the same biosynthetic gene cluster and present both docking and molecular dynamics simulations consistent with this hypothesis. Our results expand the scope of direct enzymatic nitration reactions and provide the first evidence for such a modification of a peptide synthetase-bound substrate. Both of these insights may aid in the downstream development of biocatalytic approaches to synthesize rufomycin analogues and related drug candidates.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Nitratos , Nitratos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Simulación de Dinámica Molecular , Tirosina , Especificidad por Sustrato
3.
J Phys Chem Lett ; 14(1): 41-48, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36566390

RESUMEN

Enzyme reactivity is often enhanced by changes in oxidation state, spin state, and metal-ligand covalency of associated metallocofactors. The development of spectroscopic methods for studying these processes coincidentally with structural rearrangements is essential for elucidating metalloenzyme mechanisms. Herein, we demonstrate the feasibility of collecting X-ray emission spectra of metalloenzyme crystals at a third-generation synchrotron source. In particular, we report the development of a von Hamos spectrometer for the collection of Fe Kß emission optimized for analysis of dilute biological samples. We further showcase its application in crystals of the immunosuppressive heme-dependent enzyme indoleamine 2,3-dioxygenase. Spectra from protein crystals in different states were compared with relevant reference compounds. Complementary density functional calculations assessing covalency support our spectroscopic analysis and identify active site conformations that correlate to high- and low-spin states. These experiments validate the suitability of an X-ray emission approach for determining spin states of previously uncharacterized metalloenzyme reaction intermediates.


Asunto(s)
Hemo , Metaloproteínas , Hemo/metabolismo , Espectrometría por Rayos X , Metales , Dominio Catalítico
4.
Front Vet Sci ; 8: 654289, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33937377

RESUMEN

The success of inactivated and live-attenuated vaccines has enhanced livestock productivity, promoted food security, and attenuated the morbidity and mortality of several human, animal, and zoonotic diseases. However, these traditional vaccine technologies are not without fault. The efficacy of inactivated vaccines can be suboptimal with particular pathogens and safety concerns arise with live-attenuated vaccines. Additionally, the rate of emerging infectious diseases continues to increase and with that the need to quickly deploy new vaccines. Unfortunately, first generation vaccines are not conducive to such urgencies. Within the last three decades, veterinary medicine has spearheaded the advancement in novel vaccine development to circumvent several of the flaws associated with classical vaccines. These third generation vaccines, including DNA, RNA and recombinant viral-vector vaccines, induce both humoral and cellular immune response, are economically manufactured, safe to use, and can be utilized to differentiate infected from vaccinated animals. The present article offers a review of commercially available novel vaccine technologies currently utilized in companion animal, food animal, and wildlife disease control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...