Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Agron Sustain Dev ; 44(3): 25, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660316

RESUMEN

Sorghum production system in the semi-arid region of Africa is characterized by low yields which are generally attributed to high rainfall variability, poor soil fertility, and biotic factors. Production constraints must be well understood and quantified to design effective sorghum-system improvements. This study uses the state-of-the-art in silico methods and focuses on characterizing the sorghum production regions in Mali for drought occurrence and its effects on sorghum productivity. For this purpose, we adapted the APSIM-sorghum module to reproduce two cultivated photoperiod-sensitive sorghum types across a latitude of major sorghum production regions in Western Africa. We used the simulation outputs to characterize drought stress scenarios. We identified three main drought scenarios: (i) no-stress; (ii) early pre-flowering drought stress; and (iii) drought stress onset around flowering. The frequency of drought stress scenarios experienced by the two sorghum types across rainfall zones and soil types differed. As expected, the early pre-flowering and flowering drought stress occurred more frequently in isohyets < 600 mm, for the photoperiod-sensitive, late-flowering sorghum type. In isohyets above 600 mm, the frequency of drought stress was very low for both cultivars. We quantified the consequences of these drought scenarios on grain and biomass productivity. The yields of the highly-photoperiod-sensitive sorghum type were quite stable across the higher rainfall zones > 600 mm, but was affected by the drought stress in the lower rainfall zones < 600 mm. Comparatively, the less photoperiod-sensitive cultivar had notable yield gain in the driest regions < 600 mm. The results suggest that, at least for the tested crop types, drought stress might not be the major constraint to sorghum production in isohyets > 600 mm. The findings from this study provide the entry point for further quantitative testing of the Genotype × Environment × Management options required to optimize sorghum production in Mali. Supplementary Information: The online version contains supplementary material available at 10.1007/s13593-023-00909-5.

2.
Ann Bot ; 131(4): 601-611, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36661105

RESUMEN

BACKGROUND AND AIMS: Main shoot total leaf number (TLN) is a key determinant of plant leaf area and crop adaptation. Environmental factors other than photoperiod can affect TLN in sorghum, implying that leaf appearance rate (LAR) and development rate can differ in response to temperature. The objectives of this study were to determine (1) if temperature effects on TLN can be explained as a consequence of differences in temperature responses across phenological processes and (2) if genotypic differences in these responses can be linked to agroecological adaptation. METHODS: Nineteen sorghum genotypes were sown on 12 dates at two locations in Ethiopia with contrasting altitude, creating temperature differences independent of photoperiod. TLN and temperature were recorded in all experiments and LAR for six sowing dates. KEY RESULTS: Eleven of the genotypes showed a temperature effect on TLN, which was associated with a significantly higher base temperature (Tbase) for LAR than for pre-anthesis development rate (DR). In contrast, genotypes with no effect of temperature on TLN had similar Tbase for LAR and DR. Across genotypes, Tbase for LAR and DR were highly correlated, but genotypes with low Tbase had the greatest difference in Tbase between the two processes. Genotypic differences were associated with racial grouping. CONCLUSIONS: Genotypic and racial differences in responses of phenological processes to temperature, in particular in Tbase, can affect specific adaptation to agroecological zones, as these differences can affect TLN in response to temperature and hence canopy size and the duration of the pre-anthesis period. These can both affect the amount of water used and radiation intercepted pre-anthesis. A multi-disciplinary approach is required to identify genotype × environment × management combinations that can best capture the ensuing specific adaptation.


Asunto(s)
Sorghum , Sorghum/genética , Temperatura , Hojas de la Planta/genética , Aclimatación , Genotipo
3.
Agron Sustain Dev ; 43(1): 15, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36714044

RESUMEN

Sorghum is an important food and feed crop in the dry lowland areas of Ethiopia. Farmers grow both early-sown long-duration landraces and late-sown short-duration improved varieties. Because timing and intensity of drought stress can vary in space and time, an understanding of major traits (G), environments (E), management (M), and their interactions (G×E×M) is needed to optimize grain and forage yield given the limited available resources. Crop simulation modeling can provide insights into these complex G×E×M interactions and be used to identify possible avenues for adaptation to prevalent drought patterns in Ethiopia. In a previous study predictive phenology models were developed for a range of Ethiopian germplasm. In this study, the aims were to (1) further parameterize and validate the APSIM-sorghum model for crop growth and yield of Ethiopian germplasm, and (2) quantify by simulation the productivity-risk trade-offs associated with early vs late sowing strategies in the dry lowlands of Ethiopia. Field experiments involving Ethiopian germplasm with contrasting phenology and height were conducted under well-watered (Melkassa) and water-limited (Miesso) conditions and crop development, growth and yield measured. Soil characterization and weather records at the experimental sites, combined with model parameterization, enabled testing of the APSIM-sorghum model, which showed good correspondence between simulated and observed data. The simulated productivity for the Ethiopian dry lowlands environments showed trade-offs between biomass and grain yield for early and late sowing strategies. The late sowing strategy tended to produce less biomass except in poor seasons, whereas it tended to produce greater grain yield except in very good seasons. This study exemplified the systems approach to identifying traits and management options needed to quantify the production-risk trade-offs associated with crop adaptation in the Ethiopian dry lowlands and further exemplifies the general robustness of the sorghum model in APSIM for this task.

4.
Plant Cell Environ ; 46(1): 23-44, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36200623

RESUMEN

Photosynthetic manipulation provides new opportunities for enhancing crop yield. However, understanding and quantifying the importance of individual and multiple manipulations on the seasonal biomass growth and yield performance of target crops across variable production environments is limited. Using a state-of-the-art cross-scale model in the APSIM platform we predicted the impact of altering photosynthesis on the enzyme-limited (Ac ) and electron transport-limited (Aj ) rates, seasonal dynamics in canopy photosynthesis, biomass growth, and yield formation via large multiyear-by-location crop growth simulations. A broad list of promising strategies to improve photosynthesis for C3 wheat and C4 sorghum were simulated. In the top decile of seasonal outcomes, yield gains were predicted to be modest, ranging between 0% and 8%, depending on the manipulation and crop type. We report how photosynthetic enhancement can affect the timing and severity of water and nitrogen stress on the growing crop, resulting in nonintuitive seasonal crop dynamics and yield outcomes. We predicted that strategies enhancing Ac alone generate more consistent but smaller yield gains across all water and nitrogen environments, Aj enhancement alone generates larger gains but is undesirable in more marginal environments. Large increases in both Ac and Aj generate the highest gains across all environments. Yield outcomes of the tested manipulation strategies were predicted and compared for realistic Australian wheat and sorghum production. This study uniquely unpacks complex cross-scale interactions between photosynthesis and seasonal crop dynamics and improves understanding and quantification of the potential impact of photosynthesis traits (or lack of it) for crop improvement research.


Asunto(s)
Nitrógeno , Agua , Australia
5.
Front Plant Sci ; 14: 1283339, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38348164

RESUMEN

Breeding sorghum to withstand droughts is pivotal to secure crop production in regions vulnerable to water scarcity. Limited transpiration (LT) restricts water demand at high vapor pressure deficit, saving water for use in critical periods later in the growing season. Here we evaluated the hypothesis that LT would increase sorghum grain yield in the United States. We used a process-based crop model, APSIM, which simulates interactions of genotype, environment, and management (G × E × M). In this study, the G component includes the LT trait (GT) and maturity group (GM), the EW component entails water deficit patterns, and the MP component represents different planting dates. Simulations were conducted over 33 years (1986-2018) for representative locations across the US sorghum belt (Kansas, Texas, and Colorado) for three planting dates and maturity groups. The interaction of GT x EW indicated a higher impact of LT sorghum on grain for late drought (LD), mid-season drought (MD), and early drought (ED, 8%), than on well-watered (WW) environments (4%). Thus, significant impacts of LT can be achieved in western regions of the sorghum belt. The lack of interaction of GT × GM × MP suggested that an LT sorghum would increase yield by around 8% across maturity groups and planting dates. Otherwise, the interaction GM × MP revealed that specific combinations are better suited across geographical regions. Overall, the findings suggest that breeding for LT would increase sorghum yield in the drought-prone areas of the US without tradeoffs.

6.
J Exp Bot ; 73(19): 6711-6726, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35961690

RESUMEN

The stay-green trait is recognized as a key drought adaptation mechanism in cereals worldwide. Stay-green sorghum plants exhibit delayed senescence of leaves and stems, leading to prolonged growth, a reduced risk of lodging, and higher grain yield under end-of-season drought stress. More than 45 quantitative trait loci (QTL) associated with stay-green have been identified, including two major QTL (Stg1 and Stg2). However, the contributing genes that regulate functional stay-green are not known. Here we show that the PIN FORMED family of auxin efflux carrier genes induce some of the causal mechanisms driving the stay-green phenotype in sorghum, with SbPIN4 and SbPIN2 located in Stg1 and Stg2, respectively. We found that nine of 11 sorghum PIN genes aligned with known stay-green QTL. In transgenic studies, we demonstrated that PIN genes located within the Stg1 (SbPIN4), Stg2 (SbPIN2), and Stg3b (SbPIN1) QTL regions acted pleiotropically to modulate canopy development, root architecture, and panicle growth in sorghum, with SbPIN1, SbPIN2, and SbPIN4 differentially expressed in various organs relative to the non-stay-green control. The emergent consequence of such modifications in canopy and root architecture is a stay-green phenotype. Crop simulation modelling shows that the SbPIN2 phenotype can increase grain yield under drought.


Asunto(s)
Sequías , Sorghum , Sitios de Carácter Cuantitativo/genética , Sorghum/fisiología , Fenotipo , Adaptación Fisiológica/genética , Grano Comestible/genética
7.
Theor Appl Genet ; 134(12): 3997-4011, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34448888

RESUMEN

KEY MESSAGE: Convolutional Neural Networks (CNNs) can perform similarly or better than standard genomic prediction methods when sufficient genetic, environmental, and management data are provided. Predicting phenotypes from genetic (G), environmental (E), and management (M) conditions is a long-standing challenge with implications to agriculture, medicine, and conservation. Most methods reduce the factors in a dataset (feature engineering) in a subjective and potentially oversimplified manner. Deep neural networks such as Multilayer Perceptrons (MPL) and Convolutional Neural Networks (CNN) can overcome this by allowing the data itself to determine which factors are most important. CNN models were developed for predicting agronomic yield from a combination of replicated trials and historical yield survey data. The results were more accurate than standard methods when tested on held-out G, E, and M data (r = 0.50 vs. r = 0.43), and performed slightly worse than standard methods when only G was held out (r = 0.74 vs. r = 0.80). Pre-training on historical data increased accuracy compared to trial data alone. Saliency map analysis indicated the CNN has "learned" to prioritize many factors of known agricultural importance.


Asunto(s)
Productos Agrícolas/genética , Genómica/métodos , Redes Neurales de la Computación , Fenotipo , Productos Agrícolas/crecimiento & desarrollo , Minería de Datos , Aprendizaje Automático , Zea mays/crecimiento & desarrollo
8.
Funct Plant Biol ; 46(12): 1072-1089, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31615621

RESUMEN

Water scarcity can limit sorghum (Sorghum bicolor (L.) Moench) production in dryland agriculture, but increased whole-plant transpiration efficiency (TEwp, biomass production per unit of water transpired) can enhance grain yield in such conditions. The objectives of this study were to quantify variation in TEwp for 27 sorghum genotypes and explore the linkages of this variation to responses of the underpinning leaf-level processes to environmental conditions. Individual plants were grown in large lysimeters in two well-watered experiments. Whole-plant transpiration per unit of green leaf area (TGLA) was monitored continuously and stomatal conductance and maximum photosynthetic capacity were measured during sunny conditions on recently expanded leaves. Leaf chlorophyll measurements of the upper five leaves of the main shoot were conducted during early grain filling. TEwp was determined at harvest. The results showed that diurnal patterns in TGLA were determined by vapour pressure deficit (VPD) and by the response of whole-plant conductance to radiation and VPD. Significant genotypic variation in the response of TGLA to VPD occurred and was related to genotypic differences in stomatal conductance. However, variation in TGLA explained only part of the variation in TEwp, with some of the residual variation explained by leaf chlorophyll readings, which were a reflection of photosynthetic capacity. Genotypes with different genetic background often differed in TEwp, TGLA and leaf chlorophyll, indicating potential differences in photosynthetic capacity among these groups. Observed differences in TEwp and its component traits can affect adaptation to drought stress.


Asunto(s)
Transpiración de Plantas , Sorghum , Sequías , Genotipo , Presión de Vapor
9.
Glob Chang Biol ; 21(11): 4115-27, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26152643

RESUMEN

Characterization of drought environment types (ETs) has proven useful for breeding crops for drought-prone regions. Here, we consider how changes in climate and atmospheric carbon dioxide (CO2 ) concentrations will affect drought ET frequencies in sorghum and wheat systems of northeast Australia. We also modify APSIM (the Agricultural Production Systems Simulator) to incorporate extreme heat effects on grain number and weight, and then evaluate changes in the occurrence of heat-induced yield losses of more than 10%, as well as the co-occurrence of drought and heat. More than six million simulations spanning representative locations, soil types, management systems, and 33 climate projections led to three key findings. First, the projected frequency of drought decreased slightly for most climate projections for both sorghum and wheat, but for different reasons. In sorghum, warming exacerbated drought stresses by raising the atmospheric vapor pressure deficit and reducing transpiration efficiency (TE), but an increase in TE due to elevated CO2 more than offset these effects. In wheat, warming reduced drought stress during spring by hastening development through winter and reducing exposure to terminal drought. Elevated CO2 increased TE but also raised radiation-use efficiency and overall growth rates and water use, thereby offsetting much of the drought reduction from warming. Second, adding explicit effects of heat on grain number and grain size often switched projected yield impacts from positive to negative. Finally, although average yield losses associated with drought will remain generally higher than that for heat stress for the next half century, the relative importance of heat is steadily growing. This trend, as well as the likely high degree of genetic variability in heat tolerance, suggests that more emphasis on heat tolerance is warranted in breeding programs. At the same time, work on drought tolerance should continue with an emphasis on drought that co-occurs with extreme heat.


Asunto(s)
Dióxido de Carbono/metabolismo , Cambio Climático , Sequías , Calor , Sorghum/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Nueva Gales del Sur , Queensland , Estaciones del Año
10.
Funct Plant Biol ; 41(11): 1019-1034, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32481055

RESUMEN

Post-rainy sorghum (Sorghum bicolor (L.) Moench) production underpins the livelihood of millions in the semiarid tropics, where the crop is affected by drought. Drought scenarios have been classified and quantified using crop simulation. In this report, variation in traits that hypothetically contribute to drought adaptation (plant growth dynamics, canopy and root water conducting capacity, drought stress responses) were virtually introgressed into the most common post-rainy sorghum genotype, and the influence of these traits on plant growth, development, and grain and stover yield were simulated across different scenarios. Limited transpiration rates under high vapour pressure deficit had the highest positive effect on production, especially combined with enhanced water extraction capacity at the root level. Variability in leaf development (smaller canopy size, later plant vigour or increased leaf appearance rate) also increased grain yield under severe drought, although it caused a stover yield trade-off under milder stress. Although the leaf development response to soil drying varied, this trait had only a modest benefit on crop production across all stress scenarios. Closer dissection of the model outputs showed that under water limitation, grain yield was largely determined by the amount of water availability after anthesis, and this relationship became closer with stress severity. All traits investigated increased water availability after anthesis and caused a delay in leaf senescence and led to a 'stay-green' phenotype. In conclusion, we showed that breeding success remained highly probabilistic; maximum resilience and economic benefits depended on drought frequency. Maximum potential could be explored by specific combinations of traits.

11.
Ann Bot ; 111(4): 629-39, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23404991

RESUMEN

BACKGROUND AND AIMS: Crop models for herbaceous ornamental species typically include functions for temperature and photoperiod responses, but very few incorporate vernalization, which is a requirement of many traditional crops. This study investigated the development of floriculture crop models, which describe temperature responses, plus photoperiod or vernalization requirements, using Australian native ephemerals Brunonia australis and Calandrinia sp. METHODS: A novel approach involved the use of a field crop modelling tool, DEVEL2. This optimization program estimates the parameters of selected functions within the development rate models using an iterative process that minimizes sum of squares residual between estimated and observed days for the phenological event. Parameter profiling and jack-knifing are included in DEVEL2 to remove bias from parameter estimates and introduce rigour into the parameter selection process. KEY RESULTS: Development rate of B. australis from planting to first visible floral bud (VFB) was predicted using a multiplicative approach with a curvilinear function to describe temperature responses and a broken linear function to explain photoperiod responses. A similar model was used to describe the development rate of Calandrinia sp., except the photoperiod function was replaced with an exponential vernalization function, which explained a facultative cold requirement and included a coefficient for determining the vernalization ceiling temperature. Temperature was the main environmental factor influencing development rate for VFB to anthesis of both species and was predicted using a linear model. CONCLUSIONS: The phenology models for B. australis and Calandrinia sp. described development rate from planting to VFB and from VFB to anthesis in response to temperature and photoperiod or vernalization and may assist modelling efforts of other herbaceous ornamental plants. In addition to crop management, the vernalization function could be used to identify plant communities most at risk from predicted increases in temperature due to global warming.


Asunto(s)
Flores/crecimiento & desarrollo , Magnoliopsida/fisiología , Modelos Biológicos , Fotoperiodo , Modelos Lineales , Portulacaceae/fisiología , Temperatura , Factores de Tiempo
12.
J Exp Bot ; 61(8): 2185-202, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20400531

RESUMEN

Progress in molecular plant breeding is limited by the ability to predict plant phenotype based on its genotype, especially for complex adaptive traits. Suitably constructed crop growth and development models have the potential to bridge this predictability gap. A generic cereal crop growth and development model is outlined here. It is designed to exhibit reliable predictive skill at the crop level while also introducing sufficient physiological rigour for complex phenotypic responses to become emergent properties of the model dynamics. The approach quantifies capture and use of radiation, water, and nitrogen within a framework that predicts the realized growth of major organs based on their potential and whether the supply of carbohydrate and nitrogen can satisfy that potential. The model builds on existing approaches within the APSIM software platform. Experiments on diverse genotypes of sorghum that underpin the development and testing of the adapted crop model are detailed. Genotypes differing in height were found to differ in biomass partitioning among organs and a tall hybrid had significantly increased radiation use efficiency: a novel finding in sorghum. Introducing these genetic effects associated with plant height into the model generated emergent simulated phenotypic differences in green leaf area retention during grain filling via effects associated with nitrogen dynamics. The relevance to plant breeding of this capability in complex trait dissection and simulation is discussed.


Asunto(s)
Productos Agrícolas/química , Productos Agrícolas/fisiología , Carácter Cuantitativo Heredable , Programas Informáticos , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Genotipo , Modelos Biológicos , Fenotipo , Sorghum/química , Sorghum/genética , Sorghum/crecimiento & desarrollo , Sorghum/fisiología
13.
Genetics ; 183(4): 1507-23, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19786622

RESUMEN

Under drought, substantial genotype-environment (G x E) interactions impede breeding progress for yield. Identifying genetic controls associated with yield response is confounded by poor genetic correlations across testing environments. Part of this problem is related to our inability to account for the interplay of genetic controls, physiological traits, and environmental conditions throughout the crop cycle. We propose a modeling approach to bridge this "gene-to-phenotype" gap. For maize under drought, we simulated the impact of quantitative trait loci (QTL) controlling two key processes (leaf and silk elongation) that influence crop growth, water use, and grain yield. Substantial G x E interaction for yield was simulated for hypothetical recombinant inbred lines (RILs) across different seasonal patterns of drought. QTL that accelerated leaf elongation caused an increase in crop leaf area and yield in well-watered or preflowering water deficit conditions, but a reduction in yield under terminal stresses (as such "leafy" genotypes prematurely exhausted the water supply). The QTL impact on yield was substantially enhanced by including pleiotropic effects of these QTL on silk elongation and on consequent grain set. The simulations obtained illustrated the difficulty of interpreting the genetic control of yield for genotypes influenced only by the additive effects of QTL associated with leaf and silk growth. The results highlight the potential of integrative simulation modeling for gene-to-phenotype prediction and for exploiting G x E interactions for complex traits such as drought tolerance.


Asunto(s)
Sequías , Modelos Genéticos , Fenotipo , Sitios de Carácter Cuantitativo , Zea mays/anatomía & histología , Zea mays/genética , Cruzamiento , Ambiente , Genotipo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Lluvia , Estrés Fisiológico/genética , Volatilización , Agua/química , Agua/farmacología , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo
14.
Plant Cell Environ ; 31(3): 378-91, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18088328

RESUMEN

Physiological and genetic studies of leaf growth often focus on short-term responses, leaving a gap to whole-plant models that predict biomass accumulation, transpiration and yield at crop scale. To bridge this gap, we developed a model that combines an existing model of leaf 6 expansion in response to short-term environmental variations with a model coordinating the development of all leaves of a plant. The latter was based on: (1) rates of leaf initiation, appearance and end of elongation measured in field experiments; and (2) the hypothesis of an independence of the growth between leaves. The resulting whole-plant leaf model was integrated into the generic crop model APSIM which provided dynamic feedback of environmental conditions to the leaf model and allowed simulation of crop growth at canopy level. The model was tested in 12 field situations with contrasting temperature, evaporative demand and soil water status. In observed and simulated data, high evaporative demand reduced leaf area at the whole-plant level, and short water deficits affected only leaves developing during the stress, either visible or still hidden in the whorl. The model adequately simulated whole-plant profiles of leaf area with a single set of parameters that applied to the same hybrid in all experiments. It was also suitable to predict biomass accumulation and yield of a similar hybrid grown in different conditions. This model extends to field conditions existing knowledge of the environmental controls of leaf elongation, and can be used to simulate how their genetic controls flow through to yield.


Asunto(s)
Productos Agrícolas/metabolismo , Modelos Biológicos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Agua/metabolismo , Zea mays/metabolismo , Transpiración de Plantas/fisiología , Suelo , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...