Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 83(23): 3901-3919, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37702657

RESUMEN

Multiple myeloma remains an incurable malignancy due to acquisition of intrinsic programs that drive therapy resistance. Here we report that casein kinase-1δ (CK1δ) and CK1ε are therapeutic targets in multiple myeloma that are necessary to sustain mitochondrial metabolism. Specifically, the dual CK1δ/CK1ε inhibitor SR-3029 had potent in vivo and ex vivo anti-multiple myeloma activity, including against primary multiple myeloma patient specimens. RNA sequencing (RNA-seq) and metabolic analyses revealed inhibiting CK1δ/CK1ε disables multiple myeloma metabolism by suppressing genes involved in oxidative phosphorylation (OxPhos), reducing citric acid cycle intermediates, and suppressing complexes I and IV of the electron transport chain. Finally, sensitivity of multiple myeloma patient specimens to SR-3029 correlated with elevated expression of mitochondrial genes, and RNA-seq from 687 multiple myeloma patient samples revealed that increased CSNK1D, CSNK1E, and OxPhos genes correlate with disease progression and inferior outcomes. Thus, increases in mitochondrial metabolism are a hallmark of multiple myeloma progression that can be disabled by targeting CK1δ/CK1ε. SIGNIFICANCE: CK1δ and CK1ε are attractive therapeutic targets in multiple myeloma whose expression increases with disease progression and connote poor outcomes, and that are necessary to sustain expression of genes directing OxPhos.


Asunto(s)
Quinasa Idelta de la Caseína , Mieloma Múltiple , Humanos , Quinasa Idelta de la Caseína/genética , Quinasa Idelta de la Caseína/metabolismo , Mieloma Múltiple/genética , Supervivencia Celular , Fosforilación , Progresión de la Enfermedad
2.
Bioinformatics ; 38(16): 4002-4010, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35751591

RESUMEN

MOTIVATION: Time-lapse microscopy is a powerful technique that relies on images of live cells cultured ex vivo that are captured at regular intervals of time to describe and quantify their behavior under certain experimental conditions. This imaging method has great potential in advancing the field of precision oncology by quantifying the response of cancer cells to various therapies and identifying the most efficacious treatment for a given patient. Digital image processing algorithms developed so far require high-resolution images involving very few cells originating from homogeneous cell line populations. We propose a novel framework that tracks cancer cells to capture their behavior and quantify cell viability to inform clinical decisions in a high-throughput manner. RESULTS: The brightfield microscopy images a large number of patient-derived cells in an ex vivo reconstruction of the tumor microenvironment treated with 31 drugs for up to 6 days. We developed a robust and user-friendly pipeline CancerCellTracker that detects cells in co-culture, tracks these cells across time and identifies cell death events using changes in cell attributes. We validated our computational pipeline by comparing the timing of cell death estimates by CancerCellTracker from brightfield images and a fluorescent channel featuring ethidium homodimer. We benchmarked our results using a state-of-the-art algorithm implemented in ImageJ and previously published in the literature. We highlighted CancerCellTracker's efficiency in estimating the percentage of live cells in the presence of bone marrow stromal cells. AVAILABILITY AND IMPLEMENTATION: https://github.com/compbiolabucf/CancerCellTracker. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Microscopía/métodos , Imagen de Lapso de Tiempo , Programas Informáticos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Medicina de Precisión , Algoritmos , Microambiente Tumoral
3.
JCI Insight ; 6(24)2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34793338

RESUMEN

The clinical utility of histone/protein deacetylase (HDAC) inhibitors in combinatorial regimens with proteasome inhibitors for patients with relapsed and refractory multiple myeloma (MM) is often limited by excessive toxicity due to HDAC inhibitor promiscuity with multiple HDACs. Therefore, more selective inhibition minimizing off-target toxicity may increase the clinical effectiveness of HDAC inhibitors. We demonstrated that plasma cell development and survival are dependent upon HDAC11, suggesting this enzyme is a promising therapeutic target in MM. Mice lacking HDAC11 exhibited markedly decreased plasma cell numbers. Accordingly, in vitro plasma cell differentiation was arrested in B cells lacking functional HDAC11. Mechanistically, we showed that HDAC11 is involved in the deacetylation of IRF4 at lysine103. Further, targeting HDAC11 led to IRF4 hyperacetylation, resulting in impaired IRF4 nuclear localization and target promoter binding. Importantly, transient HDAC11 knockdown or treatment with elevenostat, an HDAC11-selective inhibitor, induced cell death in MM cell lines. Elevenostat produced similar anti-MM activity in vivo, improving survival among mice inoculated with 5TGM1 MM cells. Elevenostat demonstrated nanomolar ex vivo activity in 34 MM patient specimens and synergistic activity when combined with bortezomib. Collectively, our data indicated that HDAC11 regulates an essential pathway in plasma cell biology establishing its potential as an emerging theraputic vulnerability in MM.


Asunto(s)
Inhibidores de Histona Desacetilasas/uso terapéutico , Histonas/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Células Plasmáticas/metabolismo , Animales , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ratones , Mieloma Múltiple/fisiopatología
4.
Blood Adv ; 5(19): 3776-3788, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34464977

RESUMEN

Interactions between the inhibitor of apoptosis protein antagonist LCL161 and the histone deacetylase inhibitor panobinostat (LBH589) were examined in human multiple myeloma (MM) cells. LCL161 and panobinostat interacted synergistically to induce apoptosis in diverse MM cell lines, including those resistant to bortezomib (PS-R). Similar interactions were observed with other histone deacetylase inhibitors (MS-275) or inhibitors of apoptosis protein antagonists (birinapant). These events were associated with downregulation of the noncanonical (but not the canonical) NF-κB pathway and activation of the extrinsic, caspase-8-related apoptotic cascade. Coexposure of MM cells to LCL161/LBH589 induced TRAF3 upregulation and led to TRAF2 and NIK downregulation, diminished expression of BCL-XL, and induction of γH2A.X. Ectopic expression of TRAF2, NIK, or BCL-XL, or short hairpin RNA TRAF3 knock-down, significantly reduced LCL161/LBH589 lethality, as did ectopic expression of dominant-negative FADD. Stromal/microenvironmental factors failed to diminish LCL161/LBH589-induced cell death. The LCL161/LBH589 regimen significantly increased cell killing in primary CD138+ cells (N = 31) and was particularly effective in diminishing the primitive progenitor cell-enriched CD138-/19+/20+/27+ population (N = 23) but was nontoxic to normal CD34+ cells. Finally, combined LCL161/LBH589 treatment significantly increased survival compared with single-agent treatment in an immunocompetent 5TGM1 murine MM model. Together, these findings argue that LCL161 interacts synergistically with LBH589 in MM cells through a process involving inactivation of the noncanonical NF-κB pathway and activation of the extrinsic apoptotic pathway, upregulation of TRAF3, and downregulation of TRAF2/BCL-XL. Notably, this regimen overcomes various forms of resistance, is active against primary MM cells, and displays significant in vivo activity. This strategy warrants further consideration in MM.


Asunto(s)
Inhibidores de Histona Desacetilasas , Mieloma Múltiple , Animales , Caspasa 8/genética , Línea Celular Tumoral , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ratones , Mieloma Múltiple/tratamiento farmacológico , FN-kappa B
5.
Cancers (Basel) ; 13(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071205

RESUMEN

Multiple myeloma is a genetically complex hematologic neoplasia in which malignant plasma cells constantly operate at the maximum limit of their unfolded protein response (UPR) due to a high secretory burden of immunoglobulins and cytokines. The endoplasmic reticulum (ER) resident protein disulfide isomerase, PDIA1 is indispensable for maintaining structural integrity of cysteine-rich antibodies and cytokines that require accurate intramolecular disulfide bond arrangement. PDIA1 expression analysis from RNA-seq of multiple myeloma patients demonstrated an inverse relationship with survival in relapsed or refractory disease, supporting its critical role in myeloma persistence. Using a structure-guided medicinal chemistry approach, we developed a potent, orally bioavailable small molecule PDIA1 inhibitor CCF642-34. The inhibition of PDIA1 overwhelms the UPR in myeloma cells, resulting in their apoptotic cell death at doses that do not affect the normal CD34+ hematopoietic stem and progenitor cells. Bortezomib resistance leads to increased PDIA1 expression and thus CCF642-34 sensitivity, suggesting that proteasome inhibitor resistance leads to PDIA1 dependence for proteostasis and survival. CCF642-34 induces acute unresolvable UPR in myeloma cells, and oral treatment increased survival of mice in the syngeneic 5TGM1 model of myeloma. Results support development of CCF642-34 to selectively target the plasma cell program and overcome the treatment-refractory state in myeloma.

6.
J Proteome Res ; 20(6): 3134-3149, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34014671

RESUMEN

Multiple myeloma is an incurable hematological malignancy that impacts tens of thousands of people every year in the United States. Treatment for eligible patients involves induction, consolidation with stem cell rescue, and maintenance. High-dose therapy with a DNA alkylating agent, melphalan, remains the primary drug for consolidation therapy in conjunction with autologous stem-cell transplantation; as such, melphalan resistance remains a relevant clinical challenge. Here, we describe a proteometabolomic approach to examine mechanisms of acquired melphalan resistance in two cell line models. Drug metabolism, steady-state metabolomics, activity-based protein profiling (ABPP, data available at PRIDE: PXD019725), acute-treatment metabolomics, and western blot analyses have allowed us to further elucidate metabolic processes associated with melphalan resistance. Proteometabolomic data indicate that drug-resistant cells have higher levels of pentose phosphate pathway metabolites. Purine, pyrimidine, and glutathione metabolisms were commonly altered, and cell-line-specific changes in metabolite levels were observed, which could be linked to the differences in steady-state metabolism of naïve cells. Inhibition of selected enzymes in purine synthesis and pentose phosphate pathways was evaluated to determine their potential to improve melphalan's efficacy. The clinical relevance of these proteometabolomic leads was confirmed by comparison of tumor cell transcriptomes from newly diagnosed MM patients and patients with relapsed disease after treatment with high-dose melphalan and autologous stem-cell transplantation. The observation of common and cell-line-specific changes in metabolite levels suggests that omic approaches will be needed to fully examine melphalan resistance in patient specimens and define personalized strategies to optimize the use of high-dose melphalan.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Humanos , Melfalán/farmacología , Metabolómica , Mieloma Múltiple/tratamiento farmacológico , Trasplante Autólogo
7.
Cell Rep ; 34(11): 108870, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33730585

RESUMEN

Ibrutinib, a bruton's tyrosine kinase (BTK) inhibitor, provokes robust clinical responses in aggressive mantle cell lymphoma (MCL), yet many patients relapse with lethal Ibrutinib-resistant (IR) disease. Here, using genomic, chemical proteomic, and drug screen profiling, we report that enhancer remodeling-mediated transcriptional activation and adaptive signaling changes drive the aggressive phenotypes of IR. Accordingly, IR MCL cells are vulnerable to inhibitors of the transcriptional machinery and especially so to inhibitors of cyclin-dependent kinase 9 (CDK9), the catalytic subunit of the positive transcription elongation factor b (P-TEFb) of RNA polymerase II (RNAPII). Further, CDK9 inhibition disables reprogrammed signaling circuits and prevents the emergence of IR in MCL. Finally, and importantly, we find that a robust and facile ex vivo image-based functional drug screening platform can predict clinical therapeutic responses of IR MCL and identify vulnerabilities that can be targeted to disable the evolution of IR.


Asunto(s)
Adenina/análogos & derivados , Resistencia a Antineoplásicos/genética , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Piperidinas/uso terapéutico , Transcripción Genética , Adenina/farmacología , Adenina/uso terapéutico , Animales , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Elementos de Facilitación Genéticos/genética , Humanos , Linfoma de Células del Manto/enzimología , Linfoma de Células del Manto/patología , Masculino , Ratones Endogámicos NOD , Ratones SCID , Piperidinas/farmacología , Proteínas Quinasas/metabolismo , ARN Polimerasa II/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Transcriptoma/genética , Resultado del Tratamiento
8.
EBioMedicine ; 54: 102716, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32268267

RESUMEN

BACKGROUND: Multiagent therapies, due to their ability to delay or overcome resistance, are a hallmark of treatment in multiple myeloma (MM). The growing number of therapeutic options in MM requires high-throughput combination screening tools to better allocate treatment, and facilitate personalized therapy. METHODS: A second-order drug response model was employed to fit patient-specific ex vivo responses of 203 MM patients to single-agent models. A novel pharmacodynamic model, developed to account for two-way combination effects, was tested with 130 two-drug combinations. We have demonstrated that this model is sufficiently parameterized by single-agent and fixed-ratio combination responses, by validating model estimates with ex vivo combination responses for different concentration ratios, using a checkerboard assay. This new model reconciles ex vivo observations from both Loewe and BLISS synergy models, by accounting for the dimension of time, as opposed to focusing on arbitrary time-points or drug effect. Clinical outcomes of patients were simulated by coupling patient-specific drug combination models with pharmacokinetic data. FINDINGS: Combination screening showed 1 in 5 combinations (21.43% by LD50, 18.42% by AUC) were synergistic ex vivo with statistical significance (P < 0.05), but clinical synergy was predicted for only 1 in 10 combinations (8.69%), which was attributed to the role of pharmacokinetics and dosing schedules. INTERPRETATION: The proposed framework can inform clinical decisions from ex vivo observations, thus providing a path toward personalized therapy using combination regimens. FUNDING: This research was funded by the H. Lee Moffitt Cancer Center Physical Sciences in Oncology (PSOC) Grant (1U54CA193489-01A1) and by H. Lee Moffitt Cancer Center's Team Science Grant. This work has been supported in part by the PSOC Pilot Project Award (5U54CA193489-04), the Translational Research Core Facility at the H. Lee Moffitt Cancer Center & Research Institute, an NCI-designated Comprehensive Cancer Center (P30-CA076292), the Pentecost Family Foundation, and Miles for Moffitt Foundation.


Asunto(s)
Antineoplásicos/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Modelación Específica para el Paciente , Anciano , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Femenino , Humanos
9.
Cancer Cell ; 35(5): 752-766.e9, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-31085176

RESUMEN

Drug-tolerant "persister" tumor cells underlie emergence of drug-resistant clones and contribute to relapse and disease progression. Here we report that resistance to the BCL-2 targeting drug ABT-199 in models of mantle cell lymphoma and double-hit lymphoma evolves from outgrowth of persister clones displaying loss of 18q21 amplicons that harbor BCL2. Further, persister status is generated via adaptive super-enhancer remodeling that reprograms transcription and offers opportunities for overcoming ABT-199 resistance. Notably, pharmacoproteomic and pharmacogenomic screens revealed that persisters are vulnerable to inhibition of the transcriptional machinery and especially to inhibition of cyclin-dependent kinase 7 (CDK7), which is essential for the transcriptional reprogramming that drives and sustains ABT-199 resistance. Thus, transcription-targeting agents offer new approaches to disable drug resistance in B-cell lymphomas.

10.
Methods Mol Biol ; 1996: 273-296, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31127562

RESUMEN

Drug resistance remains a critical problem for the treatment of multiple myeloma (MM), which can serve as a specific example for a highly prevalent unmet medical need across almost all cancer types. In MM, the therapeutic arsenal has expanded and diversified, yet we still lack in-depth molecular understanding of drug mechanisms of action and cellular pathways to therapeutic escape. For those reasons, preclinical models of drug resistance are developed and characterized using different approaches to gain insights into tumor biology and elucidate mechanisms of drug resistance. For MM, numerous drugs are used for treatment, including conventional chemotherapies (e.g., melphalan or L-phenylalanine nitrogen mustard), proteasome inhibitors (e.g., Bortezomib), and immunomodulators (e.g., Lenalidomide). These agents have diverse effects on the myeloma cells, and several mechanisms of drug resistance have been previously described. The disparity of these mechanisms and the complexity of these biological processes lead to the formation of complicated hypotheses that require omics approaches for efficient and effective analysis of model systems that can then be interpreted for patient benefit. Here, we describe the combination of metabolomics and proteomics to assess melphalan resistance in MM by examining three specific areas: drug metabolism, modulation of endogenous metabolites to assist in therapeutic escape, and changes in protein activity gauged by ATP probe uptake.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Melfalán/farmacología , Metabolómica/métodos , Mieloma Múltiple/tratamiento farmacológico , Proteómica/métodos , Antineoplásicos Alquilantes/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión/métodos , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Melfalán/uso terapéutico , Metaboloma/efectos de los fármacos , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Espectrometría de Masas en Tándem/métodos
11.
Cancer Res ; 77(12): 3336-3351, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28400475

RESUMEN

Multiple myeloma remains treatable but incurable. Despite a growing armamentarium of effective agents, choice of therapy, especially in relapse, still relies almost exclusively on clinical acumen. We have developed a system, Ex vivo Mathematical Myeloma Advisor (EMMA), consisting of patient-specific mathematical models parameterized by an ex vivo assay that reverse engineers the intensity and heterogeneity of chemosensitivity of primary cells from multiple myeloma patients, allowing us to predict clinical response to up to 31 drugs within 5 days after bone marrow biopsy. From a cohort of 52 multiple myeloma patients, EMMA correctly classified 96% as responders/nonresponders and correctly classified 79% according to International Myeloma Working Group stratification of level of response. We also observed a significant correlation between predicted and actual tumor burden measurements (Pearson r = 0.5658, P < 0.0001). Preliminary estimates indicate that, among the patients enrolled in this study, 60% were treated with at least one ineffective agent from their therapy combination regimen, whereas 30% would have responded better if treated with another available drug or combination. Two in silico clinical trials with experimental agents ricolinostat and venetoclax, in a cohort of 19 multiple myeloma patient samples, yielded consistent results with recent phase I/II trials, suggesting that EMMA is a feasible platform for estimating clinical efficacy of drugs and inclusion criteria screening. This unique platform, specifically designed to predict therapeutic response in multiple myeloma patients within a clinically actionable time frame, has shown high predictive accuracy in patients treated with combinations of different classes of drugs. The accuracy, reproducibility, short turnaround time, and high-throughput potential of this platform demonstrate EMMA's promise as a decision support system for therapeutic management of multiple myeloma. Cancer Res; 77(12); 3336-51. ©2017 AACR.


Asunto(s)
Algoritmos , Antineoplásicos/uso terapéutico , Técnicas de Apoyo para la Decisión , Modelos Teóricos , Mieloma Múltiple/tratamiento farmacológico , Ensayos Analíticos de Alto Rendimiento , Humanos
12.
Nat Commun ; 8: 14920, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28416797

RESUMEN

The novel Bruton's tyrosine kinase inhibitor ibrutinib has demonstrated high response rates in B-cell lymphomas; however, a growing number of ibrutinib-treated patients relapse with resistance and fulminant progression. Using chemical proteomics and an organotypic cell-based drug screening assay, we determine the functional role of the tumour microenvironment (TME) in ibrutinib activity and acquired ibrutinib resistance. We demonstrate that MCL cells develop ibrutinib resistance through evolutionary processes driven by dynamic feedback between MCL cells and TME, leading to kinome adaptive reprogramming, bypassing the effect of ibrutinib and reciprocal activation of PI3K-AKT-mTOR and integrin-ß1 signalling. Combinatorial disruption of B-cell receptor signalling and PI3K-AKT-mTOR axis leads to release of MCL cells from TME, reversal of drug resistance and enhanced anti-MCL activity in MCL patient samples and patient-derived xenograft models. This study unifies TME-mediated de novo and acquired drug resistance mechanisms and provides a novel combination therapeutic strategy against MCL and other B-cell malignancies.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Linfoma de Células del Manto/tratamiento farmacológico , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Adenina/análogos & derivados , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Linfoma de Células del Manto/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , Piperidinas , Proteínas Quinasas/metabolismo , Proteoma/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
13.
J Immunol ; 185(3): 1606-15, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20622119

RESUMEN

GM-CSF, IL-3, and IL-5 are proinflammatory cytokines that control the production and function of myeloid and lymphoid cells. Their receptors are composed of a ligand-specific alpha subunit and a shared common signal-transducing beta subunit (beta common receptor or GM-CSFR beta [beta(c)]). The pleiotropic nature of biologic outcomes mediated by beta(c) and the presence of large, uncharacterized regions of its cytoplasmic domain suggest that much remains to be learned about its downstream signaling pathways. Although some previous work has attempted to link beta(c) with NF-kappaB activation, a definitive mechanism that mediates this pathway has not been described and, to date, it has not been clear whether the receptor can directly activate NF-kappaB. We demonstrate that NF-kappaB activation by beta(c) is dependent on TNFR-associated factor 6 (TRAF6) and that association of TRAF6 with beta(c) requires a consensus-binding motif found in other molecules known to interact with TRAF6. Furthermore, point mutation of this motif abrogated the ability of beta(c) to mediate NF-kappaB activation and reduced the viability of an IL-3-dependent hematopoietic cell line. Because this receptor plays a key role in hematopoiesis and the beta(c) cytoplasmic domain identified in this work mediates hematopoietic cell viability, this new pathway is likely to contribute to immune cell biology. This work is significant because it is the first description of a TRAF6-dependent signaling pathway associated with a type I cytokine receptor. It also suggests that TRAF6, a mediator of TNFR and TLR signaling, may be a common signaling intermediate in diverse cytokine receptor systems.


Asunto(s)
Subunidad beta Común de los Receptores de Citocinas/fisiología , FN-kappa B/fisiología , Factor 6 Asociado a Receptor de TNF/metabolismo , Transporte Activo de Núcleo Celular/inmunología , Animales , Células Cultivadas , Células Clonales , Secuencia de Consenso , Subunidad beta Común de los Receptores de Citocinas/antagonistas & inhibidores , Subunidad beta Común de los Receptores de Citocinas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/inmunología , Fibroblastos/metabolismo , Humanos , Ratones , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Unión Proteica/genética , Unión Proteica/inmunología , Biosíntesis de Proteínas/inmunología , Estructura Terciaria de Proteína/genética , Transporte de Proteínas/inmunología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/biosíntesis , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/fisiología , Factor 6 Asociado a Receptor de TNF/deficiencia , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/fisiología
14.
Nat Rev Cancer ; 9(9): 665-74, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19693095

RESUMEN

Environment-mediated drug resistance is a form of de novo drug resistance that protects tumour cells from the initial effects of diverse therapies. Surviving foci of residual disease can then develop complex and permanent acquired resistance in response to the selective pressure of therapy. Recent evidence indicates that environment-mediated drug resistance arises from an adaptive, reciprocal signalling dialogue between tumour cells and the surrounding microenvironment. We propose that new therapeutic strategies targeting this interaction should be applied during initial treatment to prevent the emergence of acquired resistance.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasia Residual/patología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Transducción de Señal/efectos de los fármacos , Células del Estroma/efectos de los fármacos , Humanos , Células del Estroma/patología
15.
Cancer Res ; 69(3): 1009-15, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19155309

RESUMEN

The bone marrow microenvironmental components interleukin (IL)-6 and fibronectin (FN) individually influence the proliferation and survival of multiple myeloma (MM) cells; however, in vivo, these effectors most likely work together. We examined signaling events, cell cycle progression, and levels of drug response in MM cells either adhered to FN via beta1 integrins, stimulated with IL-6, or treated with the two combined. Although G(1)-S cell cycle arrest associated with FN adhesion was overcome when IL-6 was added, the cell adhesion-mediated drug resistance (CAM-DR) was maintained in the presence of IL-6. Concomitant exposure of MM cells to IL-6 and FN adhesion revealed a dramatic increase in signal transducers and activators of transcription 3 (STAT3) phosphorylation, nuclear translocation, and DNA binding, compared with either IL-6 or FN adhesion alone in four MM cell lines. Importantly, this increase in STAT3 activation correlated with a novel association between STAT3 and gp130 in cells adhered to FN before stimulation with IL-6, relative to nonadherent cells. Taken together, these results suggest a mechanism by which collaborative signaling by beta1 integrin and gp130 confers an increased survival advantage to MM cells.


Asunto(s)
Integrina beta1/metabolismo , Interleucina-6/metabolismo , Mieloma Múltiple/patología , Factor de Transcripción STAT3/metabolismo , Adhesión Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Receptor gp130 de Citocinas/metabolismo , ADN de Neoplasias/metabolismo , Resistencia a Antineoplásicos , Fibronectinas/metabolismo , Humanos , Interleucina-6/farmacología , Mieloma Múltiple/metabolismo , Fosforilación , Transducción de Señal
16.
Colloids Surf B Biointerfaces ; 67(1): 140-4, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18815015

RESUMEN

Using a previously described method for the functionalization of glass substrates with glycosaminoglycans (GAGs), in vitro experimental comparison of adhesion levels of cancer cells to glycosaminoglycan-modified substrates was performed with non-treated and heparin-treated human cancer cells of different metastatic activity. For both non-treated and heparin-treated cells, our results indicate that heparan sulfate is the preferred substrate for adhesion while keratan sulfate shows anti-adhesive properties. The observed net effect of heparin is a cell-dependent reduction in the adhesion figures. Overall, our results suggest that tissues with higher composition of heparan sulfate chains may be preferential metastatic targets and indicate that the effective use of heparin as anti-metastatic or anti-inflammatory agent may also depend on glycosaminoglycan composition of the affected organs.


Asunto(s)
Materiales Biocompatibles Revestidos , Vidrio , Glicosaminoglicanos , Neoplasias/metabolismo , Adhesión Celular/fisiología , Línea Celular Tumoral , Materiales Biocompatibles Revestidos/metabolismo , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Humanos , Neoplasias/patología
17.
Clin Cancer Res ; 14(9): 2519-26, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18451212

RESUMEN

The bone marrow microenvironment facilitates the survival, differentiation, and proliferation of hematopoietic cells. These cells are supported by fibroblast-like bone marrow stromal cells, osteoblasts, and osteoclasts which secrete soluble factors and extracellular matrix proteins that mediate these functions. This rich environment serves as a safe haven not only for normal and malignant hematopoietic cells, but also for epithelial tumor cells that metastasize to bone, offering protection from chemotherapeutic agents by common mechanisms. Soluble factors produced in the bone marrow, such as stromal cell-derived factor-1 and interleukin-6, mediate homing, survival, and proliferation of tumor cells, and integrin-mediated adhesion sequesters tumor cells to this protective niche. Environment-mediated drug resistance includes a combination of soluble factors and adhesion, and can be subdivided into soluble factor-mediated drug resistance and cell adhesion-mediated drug resistance. Because it is induced immediately by the microenvironment and is independent of epigenetic or genetic changes caused by the selective pressure of drug exposure, environment-mediated drug resistance is a form of de novo drug resistance. In this form of drug resistance, tumor cells are transiently and reversibly protected from apoptosis induced by both chemotherapy and physiologic mediators of cell death. This protection allows tumor cells to survive the insult of chemotherapy, leading to minimal residual disease, and thereby increases the probability for the development of acquired drug resistance.


Asunto(s)
Médula Ósea/metabolismo , Quimiocinas/metabolismo , Resistencia a Antineoplásicos , Integrinas/metabolismo , Neoplasias/metabolismo , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Supervivencia Celular , Humanos , Interleucina-6/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología
18.
J Biol Chem ; 279(50): 51793-803, 2004 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-15258150

RESUMEN

Viral interleukin-6 (vIL-6) is a homolog of cellular IL-6 that is encoded by the Kaposi's sarcoma-associated herpesvirus (KSHV) genome. vIL-6 binds to the IL-6 signal transducer gp130 without the cooperation of the IL-6 high affinity receptor to induce STAT3 DNA binding and cell proliferation. Although vIL-6 is believed to be important in the pathogenesis of KSHV-induced diseases, its secretion and post-translational modifications have not previously been characterized. Pulse-chase analysis revealed that the half-time of vIL-6 secretion is approximately 8-fold longer than that of human IL-6. Yet, the vIL-6 signal sequence targets human IL-6 secretion to nearly wild-type levels. Surprisingly, vIL-6 was not secreted from a cell line that does not express gp130 but expression of human gp130 in these cells enabled the secretion of vIL-6. Consistent with this observation, complete maturation of gp130 N-glycans is inhibited by vIL-6 coexpression, suggesting that the binding of the receptor to vIL-6 occurs intracellularly in early or pre-Golgi compartments. Furthermore, a vIL-6 mutant containing an endoplasmic reticulum retention signal is not secreted but does still induce receptor activation and signaling. Secreted vIL-6 is completely glycosylated at both possible N-glycosylaton sites and contains a large proportion of immature high-mannose glycans that is not typical of cytokines. These findings suggest that vIL-6 may induce gp130 signaling by an exclusively autocrine mechanism that relies on intracellular binding to its receptor. During KSHV infection, vIL-6 may only induce signaling in KSHV-infected cells to benefit the viral life cycle and promote oncogenic transformation.


Asunto(s)
Herpesvirus Humano 8/inmunología , Interleucina-6/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Antígenos CD/metabolismo , Comunicación Autocrina , Secuencia de Bases , Línea Celular , Receptor gp130 de Citocinas , ADN Viral/genética , Glicosilación , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/patogenicidad , Humanos , Interleucina-6/química , Interleucina-6/genética , Cinética , Glicoproteínas de Membrana/metabolismo , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...