Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Electrophoresis ; 37(15-16): 2196-207, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27271238

RESUMEN

The impact of nanomaterials in the environment and human health is a cause of big concern and even though intensive studies are currently being carried out, there is still a lot to elucidate. The development of validated methods for the characterization and quantification of nanomaterials and their impact on the environment should be encouraged to achieve a proper, safe, and sustainable use of nanoparticles (NPs). Recently, CE emerged as a well-adapted technique for the analysis of environmental samples. This review presents the application of NPs together with CE systems for environmental pollutants analysis, as well as the application of CE techniques for the analysis of various types of NPs.


Asunto(s)
Contaminantes Ambientales/análisis , Nanopartículas/análisis , Nanoestructuras/análisis , Electroforesis Capilar/métodos
2.
J Mater Chem B ; 4(43): 6913-6929, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-32263559

RESUMEN

Different materials have distinct surface and bulk characteristics; each of them potentially useful for the treatment of a particular wound or disease. By reviewing those materials that have reached a clinical stage the reader will have a broad panorama of the possibilities a particular material can offer, regarding its ability to support fast tissue regeneration. This review covers the most recent advances made towards the development of biomaterials aimed to support regenerative processes. Indeed, we highlight key examples, from basic research to clinical trials, of biomaterials for a specific biomedical application. In this context, the focus is made on collagen, chitosan and silica which are key representatives of a protein, a polysaccharide and an inorganic material usually employed as biomaterials. Particularly, this review article presents an overview of their potential therapeutics in the treatment of disorders within the oral mucosa and tooth supporting tissues. Finally, the importance of in vivo and in vitro studies, clinical evidence studies, systematic reviews and meta-analyses as an adequate guidance for biomaterial design and development is highlighted.

3.
J Mater Chem B ; 2(29): 4660-4670, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32262278

RESUMEN

Silica-collagen type I nanocomposite hydrogels are evaluated as medicated dressings to prevent infection in chronic wounds. Two antibiotics, gentamicin and rifamycin, are encapsulated in a single step within plain silica nanoparticles. Their antimicrobial efficiency against Pseudomonas aeruginosa and Staphylococcus aureus is assessed. Gentamycin-loaded 500 nm particles can be immobilized at high silica dose in concentrated collagen hydrogels without modifying their fibrillar structure or impacting on their rheological behavior and increases their proteolytic stability. Gentamicin release from the nanocomposites is sustained over 7 days, offering an unparalleled prolonged antibacterial activity. Particle immobilization also decreases their cytotoxicity towards surface-seeded fibroblast cells. Rifamycin-loaded 100 nm particles significantly alter the collagen hydrogel structure at high silica doses. The thus-obtained nanocomposites show no antibacterial efficiency, due to strong adsorption of rifamycin on collagen fibers. The complex interplay of interactions between drugs, silica and collagen is a key factor regulating the properties of these composite hydrogels as antibiotic-delivering biological dressings and must be taken into account for future extension to other wound healing agents.

4.
Recent Pat Biotechnol ; 5(1): 54-61, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21517744

RESUMEN

Drug delivery systems are designed to improve therapy efficacy as well as patient compliance. This could be accomplished by specifically targeting a medication intact to its active site, therefore reducing side-effects and enabling high local drug concentrations. Silica nanoparticles have gained ground in the biomedical field for their biocompatibility and biodegradability, being themselves inert and stable, thus enabling a variety of formulation designs for application in the pharmaceutical industry. This paper is a review of the recent patents on the applications of silica nanoparticles for drug delivery and their preparation. The review will focus on the different techniques available to obtain silica nanoparticles with variable morphology and their drug targeting applications, providing an overview of silica particles synthesis described in the literature.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Patentes como Asunto , Dióxido de Silicio/química , Emulsiones/química , Humanos , Magnetismo , Preparaciones Farmacéuticas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...