Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Neuropharmacol ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38549522

RESUMEN

BACKGROUND: Environmental exposures to non-biodegradable and biodegradable plastics are unavoidable. Microplastics (MPs) and nanoplastics (NPs) from the manufacturing of plastics (primary sources) and the degradation of plastic waste (secondary sources) can enter the food chain directly or indirectly and, passing biological barriers, could target both the brain and the gonads. Hence, the worldwide diffusion of environmental plastic contamination (PLASTAMINATION) in daily life may represent a possible and potentially serious risk to human health. OBJECTIVE: This review provides an overview of the effects of non-biodegradable and the more recently introduced biodegradable MPs and NPs on the brain and brain-dependent reproductive functions, summarizing the molecular mechanisms and outcomes on nervous and reproductive organs. Data from in vitro, ex vivo, non-mammalian and mammalian animal models and epidemiological studies have been reviewed and discussed. RESULTS: MPs and NPs from non-biodegradable plastics affect organs, tissues and cells from sensitive systems such as the brain and reproductive organs. Both MPs and NPs induce oxidative stress, chronic inflammation, energy metabolism disorders, mitochondrial dysfunction and cytotoxicity, which in turn are responsible for neuroinflammation, dysregulation of synaptic functions, metabolic dysbiosis, poor gamete quality, and neuronal and reproductive toxicity. In spite of this mechanistic knowledge gained from studies of non-biodegradable plastics, relatively little is known about the adverse effects or molecular mechanisms of MPs and NPs from biodegradable plastics. CONCLUSION: The neurological and reproductive health risks of MPs/NPs exposure warrant serious consideration, and further studies on biodegradable plastics are recommended.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38299283

RESUMEN

BACKGROUND: Soccer match requires anaerobic and aerobic energetic metabolism. The aim of this pilot study was to investigate the changes in blood lactate concentration in young male soccer players in different playing roles at different time points after the soccer match. METHODS: Following an initial screening of 134 young soccer athletes, 8 male athletes (average age of 15.5 ± 5 SD) were chosen for their characteristics similar to those of competitive athletes. Players were categorized as goalkeeper, central defender, central midfielder, and forward. Blood lactate concentrations were determined using a portable device at different times (10 min, 5 and 16 h) after the soccer match by a maximum effort test on a treadmill. The data were analyzed by one-way analysis of variance ANOVA, followed by Bonferroni's post-hoc test. RESULTS: The following results (mean ± SD) were obtained: VO2max (%) 60.33 ± 3.10; blood lactate (mM) end match (10 min) 2.17 ± 0.78, post-match-early (after 5 h) 2.2 ± 0.42, postmatch-late (16 h) 3.2 ± 0.84. ANOVA analysis indicated that the blood LA concentrations at end-match (10 min) and post-match-early (5 h) were statistically significative lower than those determined at post-match-late (16 h) (p < 0.05). CONCLUSION: These results suggest that aerobic mechanisms can also use LA as an energy source, contributing to the reduction of its blood concentration. This effect can be due to reduced maximal work during a soccer match and to the LA removal during exercise at reduced intensity. These data can provide indications for planning suitable training strategies for young male soccer players.

3.
Pharmaceutics ; 15(11)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38004530

RESUMEN

Plastics have changed human lives, finding a broad range of applications from packaging to medical devices. However, plastics can degrade into microscopic forms known as micro- and nanoplastics, which have raised concerns about their accumulation in the environment but mainly about the potential risk to human health. Recently, biodegradable plastic materials have been introduced on the market. These polymers are biodegradable but also bioresorbable and, indeed, are fundamental tools for drug formulations, thanks to their transient ability to pass through biological barriers and concentrate in specific tissues. However, this "other side" of bioplastics raises concerns about their toxic potential, in the form of micro- and nanoparticles, due to easier and faster tissue accumulation, with unknown long-term biological effects. This review aims to provide an update on bioplastic-based particles by analyzing the advantages and drawbacks of their potential use as components of innovative formulations for brain diseases. However, a critical analysis of the literature indicates the need for further studies to assess the safety of bioplastic micro- and nanoparticles despite they appear as promising tools for several nanomedicine applications.

4.
Front Endocrinol (Lausanne) ; 14: 1269334, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900144

RESUMEN

Introduction: Male reproduction is under the control of the hypothalamus-pituitary-gonadal (HPG) axis. The endocannabinoid system (ECS) and the kisspeptin system (KS) are two major signaling systems in the central and peripheral control of reproduction, but their possible interaction has been poorly investigated in mammals. This manuscript analyzes their possible reciprocal modulation in the control of the HPG axis. Materials and methods: Adolescent male rats were treated with kisspeptin-10 (Kp10) and endocannabinoid anandamide (AEA), the latter alone or in combination with the type 1 cannabinoid receptor (CB1) antagonist rimonabant (SR141716A). The hypothalamic KS system and GnRH expression, circulating sex steroids and kisspeptin (Kiss1) levels, and intratesticular KS and ECS were evaluated by immunohistochemical and molecular methods. Non-coding RNAs (i.e., miR145-5p, miR-132-3p, let7a-5p, let7b-5p) were also considered. Results: Circulating hormonal values were not significantly affected by Kp10 or AEA; in the hypothalamus, Kp10 significantly increased GnRH mRNA and aromatase Cyp19, Kiss1, and Kiss1 receptor (Kiss1R) proteins. By contrast, AEA treatment affected the hypothalamic KS at the protein levels, with opposite effects on the ligand and receptor, and SR141716A was capable of attenuating the AEA effects. Among the considered non-coding RNA, only the expression of miR145-5p was positively affected by AEA but not by Kp10 treatment. Localization of Kiss1+/Kiss1R+ neurons in the arcuate nucleus revealed an increase of Kiss1R-expressing neurons in Kp10- and AEA-treated animals associated with enlargement of the lateral ventricles in Kp10-treated animals. In the brain and testis, the selected non-coding RNA was differently modulated by Kp10 or AEA. Lastly, in the testis, AEA treatment affected the KS at the protein levels, whereas Kp10 affected the intragonadal levels of CB1 and FAAH, the main modulator of the AEA tone. Changes in pubertal transition-related miRNAs and the intratesticular distribution of Kiss1, Kiss1R, CB1, and CB2 following KP and AEA treatment corroborate the KS-ECS crosstalk also showing that the CB1 receptor is involved in this interplay. Conclusion: For the first time in mammals, we report the modulation of the KS in both the hypothalamus and testis by AEA and revealed the KP-dependent modulation of CB1 and FAAH in the testis. KP involvement in the progression of spermatogenesis is also suggested.


Asunto(s)
Kisspeptinas , MicroARNs , Masculino , Ratas , Animales , Kisspeptinas/genética , Kisspeptinas/metabolismo , Receptores de Kisspeptina-1/genética , Endocannabinoides/farmacología , Endocannabinoides/metabolismo , Rimonabant/metabolismo , Rimonabant/farmacología , Hipotálamo/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Mamíferos/metabolismo , Reproducción , ARN no Traducido/metabolismo , MicroARNs/metabolismo
5.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37628940

RESUMEN

Since ancient times, cannabis has been used for recreational and medical purposes [...].


Asunto(s)
Cannabinoides , Cannabis , Alucinógenos , Endocannabinoides , Agonistas de Receptores de Cannabinoides , Cannabis/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-37174181

RESUMEN

Cannabis is the most widely used illicit drug in Western counties and its abuse is particularly high in male adolescents and young adults. Its main psychotropic component, the cannabinoid delta-9-tetrahydrocannabinol (Δ9-THC), interferes in the endogenous endocannabinoid system. This signaling system is involved in the control of many biological activities, including the formation of high-quality male gametes. Direct adverse effects of Δ9-THC in male reproduction are well known in both animal models and humans. Nevertheless, the possibility of long-term effects due to epigenetic mechanisms has recently been reported. In this review, we summarize the main advances in the field suggesting the need to pay attention to the possible long-term epigenetic risks for the reproductive health of cannabis users and the health of their offspring.


Asunto(s)
Cannabinoides , Cannabis , Alucinógenos , Animales , Adolescente , Adulto Joven , Masculino , Humanos , Dronabinol/efectos adversos , Epigénesis Genética
7.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175536

RESUMEN

Opioids are substances derived from opium (natural opioids). In its raw state, opium is a gummy latex extracted from Papaver somniferum. The use of opioids and their negative health consequences among people who use drugs have been studied. Today, opioids are still the most commonly used and effective analgesic treatments for severe pain, but their use and abuse causes detrimental side effects for health, including addiction, thus impacting the user's quality of life and causing overdose. The mesocorticolimbic dopaminergic circuitry represents the brain circuit mediating both natural rewards and the rewarding aspects of nearly all drugs of abuse, including opioids. Hence, understanding how opioids affect the function of dopaminergic circuitry may be useful for better knowledge of the process and to develop effective therapeutic strategies in addiction. The aim of this review was to summarize the main features of opioids and opioid receptors and focus on the molecular and upcoming epigenetic mechanisms leading to opioid addiction. Since synthetic opioids can be effective for pain management, their ability to induce addiction in athletes, with the risk of incurring doping, is also discussed.


Asunto(s)
Analgésicos Opioides , Trastornos Relacionados con Opioides , Humanos , Analgésicos Opioides/efectos adversos , Manejo del Dolor/efectos adversos , Receptores Opioides/genética , Opio , Calidad de Vida , Trastornos Relacionados con Opioides/tratamiento farmacológico , Trastornos Relacionados con Opioides/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-36900934

RESUMEN

INTRODUCTION: Few studies have focused on the long-term effects of the COVID-19 pandemic on mental health. The objective of our work was to evaluate the changes in emotional and behavioral symptoms in patients with neuropsychiatric disorders and the impact on parenting stress 1 year after the first national lockdown. METHODS: We enrolled 369 patients aged 1.5-18 years of age referred to the Child and Adolescent Neuropsychiatry Unit of the University Hospital of Salerno (Italy) by their parents. We asked their parents to complete two standardized questionnaires for the assessment of emotional/behavioral symptoms (Child Behavior CheckList, CBCL) and parental stress (Parenting Stress Index, PSI) prior to the pandemic (Time 0), during the first national lockdown (Time 1) and after 1 year (Time 2), and we monitored the changes in symptoms over time. RESULTS: After 1 year from the start of the first national lockdown, we found a significant increase of internalizing problems, anxiety, depression, somatization, and social and oppositional-defiant problems in older children (6-18 years), and a significant increase of somatization, anxiety problems, and sleep problems in younger children (1.5-5 years). We also observed a significant relationship between emotional/behavioral symptoms and parental stress. CONCLUSION: Our study showed that parental stress levels increased compared to the pre-pandemic months and continues to persist over time, while internalizing symptoms of children and adolescents showed a significant worsening during 1 year follow-up from the first COVID-19 lockdown.


Asunto(s)
COVID-19 , Humanos , Niño , Adolescente , Lactante , Preescolar , Pandemias , Estudios de Seguimiento , Control de Enfermedades Transmisibles , Responsabilidad Parental/psicología
9.
Front Cell Neurosci ; 17: 1328269, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38249528

RESUMEN

Over the last few decades, emerging evidence suggests that non-coding RNAs (ncRNAs) including long-non-coding RNA (lncRNA), microRNA (miRNA) and circular-RNA (circRNA) contribute to the molecular events underlying progressive neuronal degeneration, and a plethora of ncRNAs have been identified significantly misregulated in many neurodegenerative diseases, including Parkinson's disease and synucleinopathy. Although a direct link between neuropathology and causative candidates has not been clearly established in many cases, the contribution of ncRNAs to the molecular processes leading to cellular dysfunction observed in neurodegenerative diseases has been addressed, suggesting that they may play a role in the pathophysiology of these diseases. Aim of the present Review is to overview and discuss recent literature focused on the role of RNA-based mechanisms involved in different aspects of neuronal pathology in Parkinson's disease and synucleinopathy models.

10.
Cent Nerv Syst Agents Med Chem ; 22(3): 160-174, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36177627

RESUMEN

BACKGROUND: Neuroinflammation is a key component in the etiopathogenesis of neurological diseases and brain aging. This process involves the brain immune system that modulates synaptic functions and protects neurons from infection or damage. Hence, the knowledge of neuroinflammation related pathways and modulation by drugs or natural compounds is functional to developing therapeutic strategies aimed at preserving, maintaining and restoring brain health. OBJECTIVE: This review article summarizes the basics of neuroinflammation and related signaling pathways, the success of the dietary intervention in clinical practice and the possible development of RNA-based strategies for treating neurological diseases. METHODS: Pubmed search from 2012 to 2022 with the keywords neuroinflammation and molecular mechanisms in combination with diet, miRNA and non-coding RNA. RESULTS: Glial cells-play a crucial role in neuroinflammation, but several pathways can be activated in response to different inflammatory stimuli, inducing cell death by apoptosis, pyroptosis or necroptosis. The dietary intervention has immunomodulatory effects and could limit the inflammatory process induced by microglia and astrocytes. Thus by inhibiting neuroinflammation and improving the symptoms of a variety of neurological diseases, diet exerts pleiotropic neuroprotective effects independently from the spectrum of pathophysiological mechanisms underlying the specific disorder. Furthermore, data from animal models revealed that altered expression of specific noncoding RNAs, in particular microRNAs, contributes to neuroinflammatory diseases; consequently, RNA-based strategies may be promising to alleviate the consequences of neuroinflammation. CONCLUSION: Further studies are needed to identify the molecular pathways and the new pharmacological targets in neuroinflammation to lay the basis for more effective and selective therapies to be applied, in parallel to dietary intervention, in the treatment of neuroinflammation-based diseases.


Asunto(s)
MicroARNs , Enfermedades del Sistema Nervioso , Fármacos Neuroprotectores , Animales , Enfermedades Neuroinflamatorias , Microglía/metabolismo , Microglía/patología , Astrocitos/metabolismo , Fármacos Neuroprotectores/farmacología , MicroARNs/genética , Enfermedades del Sistema Nervioso/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
11.
Front Cell Dev Biol ; 10: 877270, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813201

RESUMEN

Kisspeptins are involved in the regulation of hypothalamic-pituitary-gonadal axis, Leydig cell functions, and testosterone secretion, acting as endogenous ligands of the KISS1 receptor. ANKRD31 protein participates in male fertility, regulating meiotic progression, and epididymal sperm maturation. Here, we show that in Leydig cells, KISS1 receptor and ANKRD31 proteins physically interact; the formation of this protein complex is enhanced by Kisspeptin-10 that also modulates F-actin synthesis, favoring histone acetylation in chromatin and gene expression via the cytoskeletal-nucleoskeletal pathway. Kp/KISS1R system deregulation, expression impairment of cytoskeletal-nucleoskeletal mediators, Leydig gene targets, and the decreased testosterone secretion in Ankrd31 -/- testis strongly supported our hypothesis. Furthermore, cytochalasin D treatment subverted the gene expression induction dependent on Kisspeptin-10 action. In conclusion, the current work highlights a novel role for the Kisspeptin-10 in the induction of the cytoskeletal-nucleoskeletal route, downstream a physical interaction between KISS1 receptor and ANKRD31, with gene expression activation as final effect, in Leydig cells.

12.
Int J Mol Sci ; 23(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35563677

RESUMEN

Infertility is currently one of the most important health troubles in industrialised countries after cardio-vascular diseases and cancer [...].


Asunto(s)
Fertilidad , Infertilidad , Humanos , Reproducción , Proyectos de Investigación
14.
Genes (Basel) ; 13(2)2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35205340

RESUMEN

The hypothalamus-pituitary-testis axis controls the production of spermatozoa, and the kisspeptin system, comprising Kiss1 and Kiss1 receptor (Kiss1R), is the main central gatekeeper. The activity of the kisspeptin system also occurs in testis and spermatozoa, but currently the need of peripheral kisspeptin to produce gametes is not fully understood. Hence, we characterized kisspeptin system in rat spermatozoa and epididymis caput and cauda and analyzed the possible presence of Kiss1 in the epididymal fluid. The presence of Kiss1 and Kiss1R in spermatozoa collected from epididymis caput and cauda was evaluated by Western blot; significant high Kiss1 levels in the caput (p < 0.001 vs. cauda) and constant levels of Kiss1R proteins were observed. Immunofluorescence analysis revealed that the localization of Kiss1R in sperm head shifts from the posterior region in the epididymis caput to perforatorium in the epididymis cauda. In spermatozoa-free epididymis, Western blot revealed higher expression of Kiss1 and Kiss1R in caput (p < 0.05 vs. cauda). Moreover, immunohistochemistry revealed that Kiss1 and Kiss1R proteins were mainly localized in the secretory epithelial cell types and in contractile myoid cells, respectively. Finally, both dot blot and Elisa revealed the presence of Kiss1 in the epididymal fluid collected from epididymis cauda and caput, indicating that rat epididymis and spermatozoa possess a complete kisspeptin system. In conclusion, we reported for the first time in rodents Kiss1R trafficking in spermatozoa during the epididymis transit and Kiss1 measure in the epididymal fluid, thus suggesting a possible role for the system in spermatozoa maturation and storage within the epididymis.


Asunto(s)
Epidídimo , Kisspeptinas , Animales , Epidídimo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Proteínas/metabolismo , Ratas , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Maduración del Esperma/genética , Espermatozoides/metabolismo
15.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34830483

RESUMEN

Glyphosate is widely used worldwide as a potent herbicide. Due to its ubiquitous use, it is detectable in air, water and foodstuffs and can accumulate in human biological fluids and tissues representing a severe human health risk. In plants, glyphosate acts as an inhibitor of the shikimate pathway, which is absent in vertebrates. Due to this, international scientific authorities have long-considered glyphosate as a compound that has no or weak toxicity in humans. However, increasing evidence has highlighted the toxicity of glyphosate and its formulations in animals and human cells and tissues. Thus, despite the extension of the authorization of the use of glyphosate in Europe until 2022, several countries have begun to take precautionary measures to reduce its diffusion. Glyphosate has been detected in urine, blood and maternal milk and has been found to induce the generation of reactive oxygen species (ROS) and several cytotoxic and genotoxic effects in vitro and in animal models directly or indirectly through its metabolite, aminomethylphosphonic acid (AMPA). This review aims to summarize the more relevant findings on the biological effects and underlying molecular mechanisms of glyphosate, with a particular focus on glyphosate's potential to induce inflammation, DNA damage and alterations in gene expression profiles as well as adverse effects on reproduction and development.


Asunto(s)
Glicina/análogos & derivados , Herbicidas/efectos adversos , Inflamación/genética , Neoplasias/genética , Daño del ADN/efectos de los fármacos , Europa (Continente) , Regulación de la Expresión Génica/efectos de los fármacos , Glicina/efectos adversos , Humanos , Inflamación/inducido químicamente , Inflamación/patología , Neoplasias/inducido químicamente , Neoplasias/patología , Organofosfonatos/metabolismo , Reproducción/efectos de los fármacos , Reproducción/genética , Glifosato
16.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34575829

RESUMEN

Bisphenol A (BPA) is largely used as a monomer in some types of plastics. It accumulates in tissues and fluids and is able to bypass the placental barrier, affecting various organs and systems. Due to huge developmental processes, children, foetuses, and neonates could be more sensitive to BPA-induced toxicity. To investigate the multi-systemic effects of chronic exposure to a low BPA dose (100 µg/L), pregnant Wistar rats were exposed to BPA in drinking water during gestation and lactation. At weaning, newborn rats received the same treatments as dams until sex maturation. Free and conjugated BPA levels were measured in plasma and adipose tissue; the size of cerebral ventricles was analysed in the brain; morpho-functional and molecular analyses were carried out in the liver with a focus on the expression of inflammatory cytokines and Sirtuin 1 (Sirt1). Higher BPA levels were found in plasma and adipose tissue from BPA treated pups (17 PND) but not in weaned animals. Lateral cerebral ventricles were significantly enlarged in lactating and weaned BPA-exposed animals. In addition, apart from microvesicular steatosis, liver morphology did not exhibit any statistically significant difference for morphological signs of inflammation, hypertrophy, or macrovesicular steatosis, but the expression of inflammatory cytokines, Sirt1, its natural antisense long non-coding RNA (Sirt1-AS LncRNA) and histone deacetylase 1 (Hdac1) were affected in exposed animals. In conclusion, chronic exposure to a low BPA dose could increase the risk for disease in adult life as a consequence of higher BPA circulating levels and accumulation in adipose tissue during the neonatal period.


Asunto(s)
Compuestos de Bencidrilo/efectos adversos , Agua Potable/química , Exposición a Riesgos Ambientales/efectos adversos , Evaluación del Impacto en la Salud , Fenoles/efectos adversos , Contaminantes Químicos del Agua/efectos adversos , Tejido Adiposo/metabolismo , Animales , Modelos Animales de Enfermedad , Agua Potable/análisis , Femenino , Inmunohistoquímica , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Lactancia/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , NAD/metabolismo , Estrés Oxidativo , Embarazo , Ratas , Sirtuina 1/metabolismo , Contaminantes Químicos del Agua/administración & dosificación , Destete
17.
Int J Mol Sci ; 22(18)2021 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-34576283

RESUMEN

Alongside the well-known central modulatory role, the Kisspeptin system, comprising Kiss1, its cleavage products (Kisspeptins), and Kisspeptin receptor (Kiss1R), was found to regulate gonadal functions in vertebrates; however, its functional role in the male gamete and its localization during maturation have been poorly understood. The present study analyzed Kisspeptin system in dog testis and spermatozoa recovered from different segments of the epididymis, with focus on Kiss1R on sperm surface alongside the maturation during epididymal transit, demonstrated by modification in sperm kinetic, morphology, and protamination. The proteins Kiss1 and Kiss1R were detected in dog testis. The receptor Kiss1R only was detected in total protein extracts from epididymis spermatozoa, whereas dot blot revealed Kiss1 immunoreactivity in the epidydimal fluid. An increase of the Kiss1R protein on sperm surface along the length of the epididymis, with spermatozoa in the tail showing plasma membrane integrity and Kiss1R protein (p < 0.05 vs. epididymis head and body) was observed by flow cytometry and further confirmed by epifluorescence microscopy and Western blot carried on sperm membrane preparations. In parallel, during the transit in the epididymis spermatozoa significantly modified their ability to move and the pattern of motility; a progressive increase in protaminization also occurred. In conclusion, Kisspeptin system was detected in dog testis and spermatozoa. Kiss1R trafficking toward plasma membrane along the length of the epididymis and Kiss1 in epididymal fluid suggested a new functional role of the Kisspeptin system in sperm maturation and storage.


Asunto(s)
Epidídimo/metabolismo , Receptores de Kisspeptina-1/metabolismo , Espermatozoides/metabolismo , Animales , Líquidos Corporales/metabolismo , Recuento de Células , Perros , Epidídimo/anatomía & histología , Cinética , Kisspeptinas/metabolismo , Masculino , Testículo/anatomía & histología
18.
Artículo en Inglés | MEDLINE | ID: mdl-33804513

RESUMEN

Much of the planet is swimming in discarded plastic, which is harming animal and possibly human health. Once at sea, sunlight, wind, and wave action break down plastic waste into small particles: the microplastics (MPs). Currently, particular attention has been drawn to their effects on aquatic environments but the health risks, especially in mammals, are poorly known. These non-biodegradable materials can act as a vector for environmental pollutants, can be ingested by humans in food and water, and can enter and accumulate in human tissues with a possible risk for heath. Recent studies revealed the deleterious effects of MPs exposure in male reproduction and sperm quality, making them a potential hazard to reproductive success. This manuscript summarizes the main changes in sperm quality along the lifespan and the upcoming studies on the effects of MPs in male fertility in mammals.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Fertilidad , Humanos , Masculino , Microplásticos , Plásticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
19.
Antioxidants (Basel) ; 10(4)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805092

RESUMEN

Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.

20.
Artículo en Inglés | MEDLINE | ID: mdl-33573212

RESUMEN

Diet deeply impacts brain functions like synaptic plasticity and cognitive processes, neuroendocrine functions, reproduction and behaviour, with detrimental or protective effects on neuronal physiology and therefore consequences for health. In this respect, the activity of metabolic sensors within the brain is critical for the maintenance of health status and represents a possible therapeutic target for some diseases. This review summarizes the main activity of Sirtuin1 (Sirt1), a metabolic sensor within the brain with a focus on the link between the central control of energy homeostasis and reproduction. The possible modulation of Sirt1 by natural phytochemical compounds like polyphenols is also discussed.


Asunto(s)
Reproducción , Sirtuina 1 , Encéfalo/metabolismo , Metabolismo Energético , Homeostasis , Plasticidad Neuronal , Sirtuina 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...