Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Emotion ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635194

RESUMEN

Theories of semantic organization have historically prioritized investigation of concrete concepts pertaining to inanimate objects and natural kinds. As a result, accounts of the conceptual representation of emotions have almost exclusively focused on their juxtaposition with concrete concepts. The present study aims to fill this gap by deriving a large set of normative feature data for emotion concepts and assessing similarities and differences between the featural representation of emotion, nonemotion abstract, and concrete concepts. We hypothesized that differences between the experience of emotions (e.g., happiness and sadness) and the experience of other abstract concepts (e.g., equality and tyranny), specifically regarding the relative importance of interoceptive states, might drive distinctions in the dimensions along which emotion concepts are represented. We also predicted, based on constructionist views of emotion, that emotion concepts might demonstrate more variability in their representation than concrete and other abstract concepts. Participants listed features which we coded into discrete categories and contrasted the feature distributions across conceptual types. Analyses revealed statistically significant differences in the distribution of features among the category types by condition. We also examined variability in the features generated, finding that, contrary to expectation, emotion concepts were associated with less variability. Our results reflect subtle differences between the structure of emotion concepts and the structure of, not only concrete concepts, but also other abstract concepts. We interpret these findings in the context of our sample, which was restricted to native English speakers, and discuss the importance of validating these findings across speakers of different languages. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

2.
Cortex ; 172: 141-158, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38330778

RESUMEN

BACKGROUND: Cognitive control processes, including those involving frontoparietal networks, are highly variable between individuals, posing challenges to basic and clinical sciences. While distinct frontoparietal networks have been associated with specific cognitive control functions such as switching, inhibition, and working memory updating functions, there have been few basic tests of the role of these networks at the individual level. METHODS: To examine the role of cognitive control at the individual level, we conducted a within-subject excitatory transcranial magnetic stimulation (TMS) study in 19 healthy individuals that targeted intrinsic ("resting") frontoparietal networks. Person-specific intrinsic networks were identified with resting state functional magnetic resonance imaging scans to determine TMS targets. The participants performed three cognitive control tasks: an adapted Navon figure-ground task (requiring set switching), n-back (working memory), and Stroop color-word (inhibition). OBJECTIVE: Hypothesis: We predicted that stimulating a network associated with externally oriented control [the "FPCN-B" (fronto-parietal control network)] would improve performance on the set switching and working memory task relative to a network associated with attention (the Dorsal Attention Network, DAN) and cranial vertex in a full within-subjects crossover design. RESULTS: We found that set switching performance was enhanced by FPCN-B stimulation along with some evidence of enhancement in the higher-demand n-back conditions. CONCLUSION: Higher task demands or proactive control might be a distinguishing role of the FPCN-B, and personalized intrinsic network targeting is feasible in TMS designs.


Asunto(s)
Memoria a Corto Plazo , Estimulación Magnética Transcraneal , Humanos , Memoria a Corto Plazo/fisiología , Imagen por Resonancia Magnética , Inhibición Psicológica , Cognición/fisiología , Encéfalo/fisiología
3.
J Neural Eng ; 21(1)2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38081060

RESUMEN

Objective.To evaluate the signal quality of dry MXene-based electrode arrays (also termed 'MXtrodes') for electroencephalographic (EEG) recordings where gelled Ag/AgCl electrodes are a standard.Approach.We placed 4 × 4 MXtrode arrays and gelled Ag/AgCl electrodes on different scalp locations. The scalp was cleaned with alcohol and rewetted with saline before application. We recorded from both electrode types simultaneously while participants performed a vigilance task.Main results.The root mean squared amplitude of MXtrodes was slightly higher than that of Ag/AgCl electrodes (.24-1.94 uV). Most MXtrode pairs had slightly lower broadband spectral coherence (.05 to .1 dB) and Delta- and Theta-band timeseries correlation (.05 to .1 units) compared to the Ag/AgCl pair (p< .001). However, the magnitude of correlation and coherence was high across both electrode types. Beta-band timeseries correlation and spectral coherence were higher between neighboring MXtrodes in the array (.81 to .84 units) than between any other pair (.70 to .75 units). This result suggests the close spacing of the nearest MXtrodes (3 mm) more densely sampled high spatial-frequency topographies. Event-related potentials were more similar between MXtrodes (ρ⩾ .95) than equally spaced Ag/AgCl electrodes (ρ⩽ .77,p< .001). Dry MXtrode impedance (x̄= 5.15 KΩ cm2) was higher and more variable than gelled Ag/AgCl electrodes (x̄= 1.21 KΩ cm2,p< .001). EEG was also recorded on the scalp across diverse hair types.Significance.Dry MXene-based electrodes record EEG at a quality comparable to conventional gelled Ag/AgCl while requiring minimal scalp preparation and no gel. MXtrodes can record independent signals at a spatial density four times higher than conventional electrodes, including through hair, thus opening novel opportunities for research and clinical applications that could benefit from dry and higher-density configurations.


Asunto(s)
Benchmarking , Electroencefalografía , Nitritos , Elementos de Transición , Humanos , Electroencefalografía/métodos , Impedancia Eléctrica , Electrodos , Etanol
4.
Neuroimage ; 283: 120386, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37820860

RESUMEN

Cognitive control (CC) is essential for problem-solving in everyday life, and CC-related deficits occur alongside costly and debilitating disorders. The tri-partite model suggests that CC comprises multiple behaviors, including switching, inhibiting, and updating. Activity within the fronto-parietal control network B (FPCN-B), the dorsal attention network (DAN), the cingulo-opercular network (CON), and the lateral default-mode network (L-DMN) is related to switching and inhibiting behaviors. However, our understanding of how these brain regions interact to bring about cognitive switching and inhibiting in individuals is unclear. In the current study, subjects performed two in-scanner tasks that required switching and inhibiting. We used support vector regression (SVR) models containing individually-estimated functional connectivity between the FPCN-B, DAN, CON and L-DMN to predict switching and inhibiting behaviors. We observed that: inter-network connectivity can predict inhibiting and switching behaviors in individuals, and the L-DMN plays a role in switching and inhibiting behaviors. Therefore, individually estimated inter-network connections are markers of CC behaviors, and CC behaviors may arise due to interactions between a set of networks.


Asunto(s)
Mapeo Encefálico , Disfunción Cognitiva , Humanos , Imagen por Resonancia Magnética , Encéfalo , Cognición
5.
eNeuro ; 10(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558464

RESUMEN

EEG phase is increasingly used in cognitive neuroscience, brain-computer interfaces, and closed-loop stimulation devices. However, it is unknown how accurate EEG phase prediction is across cognitive states. We determined the EEG phase prediction accuracy of parieto-occipital alpha waves across rest and task states in 484 participants over 11 public datasets. We were able to track EEG phase accurately across various cognitive conditions and datasets, especially during periods of high instantaneous alpha power and signal-to-noise ratio (SNR). Although resting states generally have higher accuracies than task states, absolute accuracy differences were small, with most of these differences attributable to EEG power and SNR. These results suggest that experiments and technologies using EEG phase should focus more on minimizing external noise and waiting for periods of high power rather than inducing a particular cognitive state.


Asunto(s)
Electroencefalografía , Descanso , Humanos , Electroencefalografía/métodos , Relación Señal-Ruido , Descanso/fisiología , Cognición , Encéfalo/fisiología
6.
J Neuropsychol ; 17(2): 364-381, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36208463

RESUMEN

This study examined whether an alteration in the effort-reward relationship, a theoretical framework based on cognitive neuroscience, could explain cognitive fatigue. Forty persons with MS and 40 healthy age- and education-matched cognitively healthy controls (HC) participated in a computerized switching task with orthogonal high- and low-demand (effort) and reward manipulations. We used the Visual Analog Scale of Fatigue (VAS-F) to assess subjective state fatigue before and after each condition during the task. We used mixed-effects models to estimate the association and interaction between effort and reward and their relationship to subjective fatigue and task performance. We found the high-demand condition was associated with increased VAS-F scores (p < .001), longer response times (RT) (p < .001) and lower accuracy (p < .001). The high-reward condition was associated with faster RT (p = .006) and higher accuracy (p = .03). There was no interaction effect between effort and reward on VAS-F scores or performance. Participants with MS reported higher VAS-F scores (p = .02). Across all conditions, participants with MS were slower (p < .001) and slower as a function of condition demand compared with HC (p < .001). This behavioural study did not find evidence that an effort-reward interaction is associated with cognitive fatigue. However, our findings support the role of effort in subjective cognitive fatigue and both effort and reward on task performance. In future studies, more salient reward manipulations could be necessary to identify effort-reward interactions on subjective cognitive fatigue.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/psicología , Tiempo de Reacción , Recompensa , Fatiga/complicaciones , Cognición
7.
J Neurosci ; 42(24): 4913-4926, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35545436

RESUMEN

Aphasia is a prevalent cognitive syndrome caused by stroke. The rarity of premorbid imaging and heterogeneity of lesion obscures the links between the local effects of the lesion, global anatomic network organization, and aphasia symptoms. We applied a simulated attack approach in humans to examine the effects of 39 stroke lesions (16 females) on anatomic network topology by simulating their effects in a control sample of 36 healthy (15 females) brain networks. We focused on measures of global network organization thought to support overall brain function and resilience in the whole brain and within the left hemisphere. After removing lesion volume from the network topology measures and behavioral scores [the Western Aphasia Battery Aphasia Quotient (WAB-AQ), four behavioral factor scores obtained from a neuropsychological battery, and a factor sum], we compared the behavioral variance accounted for by simulated poststroke connectomes to that observed in the randomly permuted data. Global measures of anatomic network topology in the whole brain and left hemisphere accounted for 10% variance or more of the WAB-AQ and the lexical factor score beyond lesion volume and null permutations. Streamline networks provided more reliable point estimates than FA networks. Edge weights and network efficiency were weighted most highly in predicting the WAB-AQ for FA networks. Overall, our results suggest that global network measures provide modest statistical value beyond lesion volume when predicting overall aphasia severity, but less value in predicting specific behaviors. Variability in estimates could be induced by premorbid ability, deafferentation and diaschisis, and neuroplasticity following stroke.SIGNIFICANCE STATEMENT Poststroke, the remaining neuroanatomy maintains cognition and supports recovery. However, studies often use small, cross-sectional samples that cannot fully model the interactions between lesions and other variables that affect networks in stroke. Alternate methods are required to account for these effects. "Simulated attack" models are computational approaches that apply virtual damage to the brain and measure their putative consequences. Using a simulated attack model, we estimated how simulated damage to anatomic networks could account for language performance. Overall, our results reveal that global network measures can provide modest statistical value predicting overall aphasia severity, but less value in predicting specific behaviors. These findings suggest that more theoretically precise network models could be necessary to robustly predict individual outcomes in aphasia.


Asunto(s)
Afasia , Conectoma , Accidente Cerebrovascular , Afasia/diagnóstico por imagen , Afasia/etiología , Encéfalo/patología , Estudios Transversales , Femenino , Humanos , Imagen por Resonancia Magnética , Accidente Cerebrovascular/patología
8.
Arch Clin Neuropsychol ; 37(6): 1208-1213, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35381600

RESUMEN

OBJECTIVE: We examined whether fatigue in multiple sclerosis (MS) is linked to switching processes when switching is measured by the Trail Making Test (TMT). METHOD: Eighty-three participants with MS were administered a battery of standardized tests of switching, working memory, and processing speed. Ordinary least squares regression models were used to estimate the association between fatigue severity and switching above and beyond attention, working memory, and processing speed. RESULTS: We found a negative association between TMT performance and fatigue severity score. When measures of processing speed and working memory were included in the model, the switching measure continued to uniquely contribute to fatigue severity. CONCLUSIONS: There may be a unique relationship between fatigue and switching processes identifiable by clinical measures of switching. Future research should continue to investigate this relationship by using both behavioral and neural markers to test models of fatigue to eventually identify specific intervention targets.


Asunto(s)
Esclerosis Múltiple , Fatiga/diagnóstico , Fatiga/etiología , Humanos , Memoria a Corto Plazo , Esclerosis Múltiple/complicaciones , Pruebas Neuropsicológicas , Prueba de Secuencia Alfanumérica
9.
Neuroimage ; 256: 119191, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35413447

RESUMEN

Transcranial magnetic stimulation (TMS) is used in several FDA-approved treatments and, increasingly, to treat neurological disorders in off-label uses. However, the mechanism by which TMS causes physiological change is unclear, as are the origins of response variability in the general population. Ideally, objective in vivo biomarkers could shed light on these unknowns and eventually inform personalized interventions. Continuous theta-burst stimulation (cTBS) is a form of TMS observed to reduce motor evoked potentials (MEPs) for 60 min or longer post-stimulation, although the consistency of this effect and its mechanism continue to be under debate. Here, we use glutamate-weighted chemical exchange saturation transfer (gluCEST) magnetic resonance imaging (MRI) at ultra-high magnetic field (7T) to measure changes in glutamate concentration at the site of cTBS. We find that the gluCEST signal in the ipsilateral hemisphere of the brain generally decreases in response to cTBS, whereas consistent changes were not detected in the contralateral region of interest (ROI) or in subjects receiving sham stimulation.


Asunto(s)
Corteza Motora , Estimulación Magnética Transcraneal , Potenciales Evocados Motores/fisiología , Ácido Glutámico , Humanos , Imagen por Resonancia Magnética , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiología , Estimulación Magnética Transcraneal/métodos
10.
Behav Brain Sci ; 45: e28, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35139951

RESUMEN

The recent trend to label dilemmas in psychology as "crises" is insidious. The "'Crisis' Crisis" in psychology can distract us from actionable practices. As a case in point, "The Generalizability Crisis" offers the valuable central thesis that verbal-quantitative gaps imperil psychological science. Focusing on the key issues rather than crisis narratives can lead to progress in our discourse and research.

11.
Neuroimage Clin ; 33: 102934, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34995870

RESUMEN

Optimal performance in any task relies on the ability to detect and correct errors. The anterior cingulate cortex and the broader posterior medial frontal cortex (pMFC) are active during error processing. However, it is unclear whether damage to the pMFC impairs error monitoring. We hypothesized that successful error monitoring critically relies on connections between the pMFC and broader cortical networks involved in executive functions and the task being monitored. We tested this hypothesis in the context of speech error monitoring in people with post-stroke aphasia. Diffusion weighted images were collected in 51 adults with chronic left-hemisphere stroke and 37 age-matched control participants. Whole-brain connectomes were derived using constrained spherical deconvolution and anatomically-constrained probabilistic tractography. Support vector regressions identified white matter connections in which lost integrity in stroke survivors related to reduced error detection during confrontation naming. Lesioned connections to the bilateral pMFC were related to reduce error monitoring, including many connections to regions associated with speech production and executive function. We conclude that connections to the pMFC support error monitoring. Error monitoring in speech production is supported by the structural connectivity between the pMFC and regions involved in speech production, comprehension, and executive function. Interactions between pMFC and other task-relevant processors may similarly be critical for error monitoring in other task contexts.


Asunto(s)
Afasia , Conectoma , Adulto , Lóbulo Frontal/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Habla
12.
Sci Transl Med ; 13(612): eabf8629, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34550728

RESUMEN

Soft bioelectronic interfaces for mapping and modulating excitable networks at high resolution and at large scale can enable paradigm-shifting diagnostics, monitoring, and treatment strategies. Yet, current technologies largely rely on materials and fabrication schemes that are expensive, do not scale, and critically limit the maximum attainable resolution and coverage. Solution processing is a cost-effective manufacturing alternative, but biocompatible conductive inks matching the performance of conventional metals are lacking. Here, we introduce MXtrodes, a class of soft, high-resolution, large-scale bioelectronic interfaces enabled by Ti3C2 MXene (a two-dimensional transition metal carbide nanomaterial) and scalable solution processing. We show that the electrochemical properties of MXtrodes exceed those of conventional materials and do not require conductive gels when used in epidermal electronics. Furthermore, we validate MXtrodes in applications ranging from mapping large-scale neuromuscular networks in humans to cortical neural recording and microstimulation in swine and rodent models. Last, we demonstrate that MXtrodes are compatible with standard clinical neuroimaging modalities.


Asunto(s)
Fenómenos Electrofisiológicos , Electrofisiología
13.
Brain Commun ; 3(3): fcab194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34522884

RESUMEN

Alexia is common in the context of aphasia. It is widely agreed that damage to phonological and semantic systems not specific to reading causes co-morbid alexia and aphasia. Studies of alexia to date have only examined phonology and semantics as singular processes or axes of impairment, typically in the context of stereotyped alexia syndromes. However, phonology, in particular, is known to rely on subprocesses, including sensory-phonological processing, motor-phonological processing, and sensory-motor integration. Moreover, many people with stroke aphasia demonstrate mild or mixed patterns of reading impairment that do not fit neatly with one syndrome. This cross-sectional study tested whether the hallmark symptom of phonological reading impairment, the lexicality effect, emerges from damage to a specific subprocess of phonology in stroke patients not selected for alexia syndromes. Participants were 30 subjects with left-hemispheric stroke and 37 age- and education-matched controls. A logistic mixed-effects model tested whether post-stroke impairments in sensory phonology, motor phonology, or sensory-motor integration modulated the effect of item lexicality on patient accuracy in reading aloud. Support vector regression voxel-based lesion-symptom mapping localized brain regions necessary for reading and non-orthographic phonological processing. Additionally, a novel support vector regression structural connectome-symptom mapping method identified the contribution of both lesioned and spared but disconnected, brain regions to reading accuracy and non-orthographic phonological processing. Specifically, we derived whole-brain structural connectomes using constrained spherical deconvolution-based probabilistic tractography and identified lesioned connections based on comparisons between patients and controls. Logistic mixed-effects regression revealed that only greater motor-phonological impairment related to lower accuracy reading aloud pseudowords versus words. Impaired sensory-motor integration was related to lower overall accuracy in reading aloud. No relationship was identified between sensory-phonological impairment and reading accuracy. Voxel-based and structural connectome lesion-symptom mapping revealed that lesioned and disconnected left ventral precentral gyrus related to both greater motor-phonological impairment and lower sublexical reading accuracy. In contrast, lesioned and disconnected left temporoparietal cortex is related to both impaired sensory-motor integration and reduced overall reading accuracy. These results clarify that at least two dissociable phonological processes contribute to the pattern of reading impairment in aphasia. First, impaired sensory-motor integration, caused by lesions disrupting the left temporoparietal cortex and its structural connections, non-selectively reduces accuracy in reading aloud. Second, impaired motor-phonological processing, caused at least partially by lesions disrupting left ventral premotor cortex and structural connections, selectively reduces sublexical reading accuracy. These results motivate a revised cognitive model of reading aloud that incorporates a sensory-motor phonological circuit.

14.
Neuroimage ; 240: 118369, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34242784

RESUMEN

There is growing interest in how neuromodulators shape brain networks. Recent neuroimaging studies provide evidence that brainstem arousal systems, such as the locus coeruleus-norepinephrine system (LC-NE), influence functional connectivity and brain network topology, suggesting they have a role in flexibly reconfiguring brain networks in order to adapt behavior and cognition to environmental demands. To date, however, the relationship between brainstem arousal systems and functional connectivity has not been assessed within the context of a task with an established relationship between arousal and behavior, with most prior studies relying on incidental variations in arousal or pharmacological manipulation and static brain networks constructed over long periods of time. These factors have likely contributed to a heterogeneity of effects across studies. To address these issues, we took advantage of the association between LC-NE-linked arousal and exploration to probe the relationships between exploratory choice, arousal-as measured indirectly via pupil diameter-and brain network dynamics. Exploration in a bandit task was associated with a shift toward fewer, more weakly connected modules that were more segregated in terms of connectivity and topology but more integrated with respect to the diversity of cognitive systems represented in each module. Functional connectivity strength decreased, and changes in connectivity were correlated with changes in pupil diameter, in line with the hypothesis that brainstem arousal systems influence the dynamic reorganization of brain networks. More broadly, we argue that carefully aligning dynamic network analyses with task designs can increase the temporal resolution at which behaviorally- and cognitively-relevant modulations can be identified, and offer these results as a proof of concept of this approach.


Asunto(s)
Nivel de Alerta/fisiología , Encéfalo/fisiología , Conducta Exploratoria/fisiología , Red Nerviosa/fisiología , Desempeño Psicomotor/fisiología , Pupila/fisiología , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Red Nerviosa/diagnóstico por imagen , Estimulación Luminosa/métodos , Adulto Joven
15.
eNeuro ; 8(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34244340

RESUMEN

Recent work has combined cognitive neuroscience and control theory to make predictions about cognitive control functions. Here, we test a link between whole-brain theories of semantics and the role of the left inferior frontal gyrus (LIFG) in controlled language performance using network control theory (NCT), a branch of systems engineering. Specifically, we examined whether two properties of node controllability, boundary and modal controllability, were linked to semantic selection and retrieval on sentence completion and verb generation tasks. We tested whether the controllability of the left IFG moderated language selection and retrieval costs and the effects of continuous θ burst stimulation (cTBS), an inhibitory form of transcranial magnetic stimulation (TMS) on behavior in 41 human subjects (25 active, 16 sham). We predicted that boundary controllability, a measure of the theoretical ability of a node to integrate and segregate brain networks, would be linked to word selection in the contextually-rich sentence completion task. In contrast, we expected that modal controllability, a measure of the theoretical ability of a node to drive the brain into specifically hard-to-reach states, would be linked to retrieval on the low-context verb generation task. Boundary controllability was linked to selection and to the ability of TMS to reduce response latencies on the sentence completion task. In contrast, modal controllability was not linked to performance on the tasks or TMS effects. Overall, our results suggest a link between the network integrating role of the LIFG and selection and the overall semantic demands of sentence completion.


Asunto(s)
Mapeo Encefálico , Lenguaje , Humanos , Imagen por Resonancia Magnética , Corteza Prefrontal , Semántica , Estimulación Magnética Transcraneal
16.
Wiley Interdiscip Rev Cogn Sci ; 12(4): e1553, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33470055

RESUMEN

Combining transcranial magnetic stimulation (TMS) with functional magnetic resonance imaging offers an unprecedented tool for studying how brain networks interact in vivo and how repetitive trains of TMS modulate those networks among patients diagnosed with affective disorders. TMS compliments neuroimaging by allowing the interrogation of causal control among brain circuits. Together with TMS, neuroimaging can provide valuable insight into the mechanisms underlying treatment effects and downstream circuit communication. Here we provide a background of the method, review relevant study designs, consider methodological and equipment options, and provide statistical recommendations. We conclude by describing emerging approaches that will extend these tools into exciting new applications. This article is categorized under: Psychology > Emotion and Motivation Psychology > Theory and Methods Neuroscience > Clinical Neuroscience.


Asunto(s)
Imagen por Resonancia Magnética , Estimulación Magnética Transcraneal , Encéfalo , Humanos , Trastornos del Humor/diagnóstico , Trastornos del Humor/terapia , Neuroimagen
17.
Nat Hum Behav ; 4(4): 397-411, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31988441

RESUMEN

Face processing supports our ability to recognize friend from foe, form tribes and understand the emotional implications of changes in facial musculature. This skill relies on a distributed network of brain regions, but how these regions interact is poorly understood. Here we integrate anatomical and functional connectivity measurements with behavioural assays to create a global model of the face connectome. We dissect key features, such as the network topology and fibre composition. We propose a neurocognitive model with three core streams; face processing along these streams occurs in a parallel and reciprocal manner. Although long-range fibre paths are important, the face network is dominated by short-range fibres. Finally, we provide evidence that the well-known right lateralization of face processing arises from imbalanced intra- and interhemispheric connections. In summary, the face network relies on dynamic communication across highly structured fibre tracts, enabling coherent face processing that underpins behaviour and cognition.


Asunto(s)
Conectoma , Cara/inervación , Adulto , Encéfalo/anatomía & histología , Encéfalo/fisiología , Cara/anatomía & histología , Femenino , Humanos , Masculino , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Adulto Joven
18.
Int J Psychophysiol ; 154: 101-110, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-30685229

RESUMEN

In the era of "big data", we are gaining rich person-specific information about neuroanatomy, neural function, and cognitive functions. However, the optimal ways to create precise approaches to optimize individuals' mental functions in health and disease are unclear. Multimodal analysis and modeling approaches can guide neuromodulation by combining anatomical networks, functional signal analysis, and cognitive neuroscience paradigms in single subjects. Our progress could be improved by progressing from statistical fits to mechanistic models. Using transcranial magnetic stimulation as an example, we discuss how integrating methods with a focus on mechanisms could improve our predictions TMS effects within individuals, refine our models of health and disease, and improve our treatments.


Asunto(s)
Cognición , Estimulación Magnética Transcraneal , Humanos
19.
Int J Psychophysiol ; 154: 3-5, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31082406

RESUMEN

The provocative paper by Ioannidis (2005) claiming that "most research findings are false" re-ignited longstanding concerns (see Meehl, 1967) that findings in the behavioral sciences are unlikely to be replicated. Then, a landmark paper by Nosek et al. (2015a) substantiated this conjecture, showing that, study reproducibility in psychology hovers at 40%. With the unfortunate failure of clinical trials in brain injury and other neurological disorders, it may be time to reconsider approaches not only in clinical interventions, but also how we establish their efficacy. A scientific community galvanized by a history of failed clinical trials and motivated by this "crisis" may be at critical cross-roads for change engendering a culture of transparent, open science where the primary goal is to test and not support hypotheses about specific interventions. The outcome of this scientific introspection could be a paradigm shift that accelerates our science bringing investigators closer to important advancements in rehabilitation medicine. In this commentary we offer a brief summary of how open science, study pre-registration and reorganization of scientific incentive structure could advance the clinical sciences.


Asunto(s)
Lesiones Encefálicas , Medicina , Humanos , Motivación , Reproducibilidad de los Resultados
20.
Nat Biomed Eng ; 3(11): 902-916, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31133741

RESUMEN

Electrocorticography (ECoG) data can be used to estimate brain-wide connectivity patterns. Yet, the invasiveness of ECoG, incomplete cortical coverage, and variability in electrode placement across individuals make the network analysis of ECoG data challenging. Here, we show that the architecture of whole-brain ECoG networks and the factors that shape it can be studied by analysing whole-brain, interregional and band-limited ECoG networks from a large cohort-in this case, of individuals with medication-resistant epilepsy. Using tools from network science, we characterized the basic organization of ECoG networks, including frequency-specific architecture, segregated modules and the dependence of connection weights on interregional Euclidean distance. We then used linear models to explain variabilities in the connection strengths between pairs of brain regions, and to highlight the joint role, in shaping the brain-wide organization of ECoG networks, of communication along white matter pathways, interregional Euclidean distance and correlated gene expression. Moreover, we extended these models to predict out-of-sample, single-subject data. Our predictive models may have future clinical utility; for example, by anticipating the effect of cortical resection on interregional communication.


Asunto(s)
Encéfalo/fisiología , Electrocorticografía/métodos , Expresión Génica , Genética Humana , Adolescente , Adulto , Anciano , Mapeo Encefálico , Simulación por Computador , Electrodos , Ontología de Genes , Humanos , Persona de Mediana Edad , Modelos Biológicos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...