Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(9)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39339218

RESUMEN

Agricultural waste is underutilized, and sometimes burning them has a negative impact on the environment and human health. This research investigates the untapped potential of extracts from maize, wheat and sunflower waste as natural materials for cutaneous, specifically, cosmetic application. The possibility of incorporating lipid and ethanol extracts from wheat, maize, and sunflower into creams was investigated together with their potential contribution to the structural and functional properties of the topical formulations. Results of the physicochemical characterization show that investigated extracts can be successfully incorporated into creams with satisfactory stability. All extracts showed a desirable safety profile and good antimicrobial activity against various microorganisms. Lipid extracts have proven to be promising structural ingredients of the oil phase, contributing to the spreadability, occlusivity, and emollient effect. Ethanol extracts influenced washability and stickiness of the formulation and could be considered as prospective ingredients in self-preserving formulations. The extracts affected the sensory properties of the creams, mainly the smell and color. These results suggest that the extracts from wheat, maize, and sunflower waste could be used as multifunctional natural ingredients for cosmetic formulations which can replace less sustainable raw materials. This also represents a valorization of waste and is in line with broader sustainability goals.

2.
Int J Biol Macromol ; 221: 48-60, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36058395

RESUMEN

Escin is an amphiphilic and weakly acidic drug that oral administration may lead to the irritation of gastric mucosa. The entrapment of escin into chitosan (CH)/xanthan gum (XG)-based polyelectrolyte complexes (PECs) can facilitate controlled drug release which may be beneficial for the reduction of its side effects. This study aimed to investigate the influence of escin content and drying method on the formation, physicochemical, and controlled, pH-dependent drug release properties of CH/XG-based PECs. Measurements of transmittance, conductivity, and rheological characterization confirmed the formation of CH/XG-based PECs with escin entrapped at escin-to-polymers mass ratios 1:1, 1:2, and 1:4. Ambient-dried PECs had higher yield, entrapment efficiency, and escin content in comparison with spray-dried ones. FT-IR spectra confirmed the interactions between CH, XG, and escin, which were stronger in ambient-dried PECs. PXRD and DSC analyses showed the amorphous escin character in all dry PECs, regardless of the drying method. The most promising controlled and pH-dependent in vitro escin release was from the ambient-dried PEC at the escin-to-polymers mass ratio of 1:1. For that reason and due to the highest yield and entrapment efficiency, this carrier has the potential to prevent the irritation of gastric mucosa after oral administration of escin.


Asunto(s)
Quitosano , Polielectrolitos/química , Quitosano/química , Escina , Sistemas de Liberación de Medicamentos , Espectroscopía Infrarroja por Transformada de Fourier , Concentración de Iones de Hidrógeno
3.
PLoS One ; 17(4): e0266237, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35377908

RESUMEN

Formulation of solid dispersions (SDs), in which the drug substance is dissolved or dispersed inside a polymer matrix, is one of the modern approaches to increase the solubility and dissolution rate of poorly soluble active pharmaceutical ingredients (APIs), such as clopidogrel. In the form of a free base, clopidogrel is unstable under increased both high moisture and temperature, so it is most often used as its salt form, clopidogrel hydrogen sulfate (CHS).The aim of this study was the formulation, characterization, and long-term stability investigation of CHS solid dispersions, prepared with four different hydrophilic polymers (poloxamer 407, macrogol 6000, povidone, copovidone) in five API/polymer ratios (1:1, 1:2, 1:3, 1:5, 1:9). SDs were prepared by the solvent evaporation method, employing ethanol (96% v/v) as a solvent. Initial results of the in vitro dissolution test showed an increase in the amount of dissolved CHS from all prepared SD samples compared to pure CHS, corresponding physical mixtures (PMs), and commercial tablets. SDs, prepared with poloxamer 407, macrogol 6000, and copovidone, at CHS/polymer ratios 1:5 and 1:9, notably increased the amount of dissolved CHS (> 80%, after 60 min), thus they were selected for further characterization. To assess the SDs long-term stability, in vitro dissolution studies, clopidogrel content determination, differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FT-IR) were performed initially and after 12 months of long-term stability studies under controlled conditions (25°C, 60% RH) meeting the ICH guideline Q1A (R2) requirements. The clopidogrel content in the selected samples was very similar at the beginning (96.13% to 99.93%) and at the end (95.98% to 99.86%) of the conducted test. DSC curves and FT-IR spectra of all SD samples after 12 months of stability study, showed the absence of CHS crystallization, which is an indication of good stability. However, the in vitro dissolution test showed a considerable reduction in CHS released from SDs with macrogol 6000. The amount of dissolved CHS from SDs with macrogol 6000 was initially 94.02% and 92.01%, and after 12 months of stability study, only 65.13% and 49.62%. In contrast, the amount of dissolved CHS from SDs prepared with poloxamer 407 and copovidone was very similar after 12 months of the stability study compared to the initial values. Results obtained indicated the great importance of the in vitro dissolution test in determining the long-term stability and quality of SDs.


Asunto(s)
Portadores de Fármacos , Poloxámero , Rastreo Diferencial de Calorimetría , Clopidogrel , Portadores de Fármacos/química , Estabilidad de Medicamentos , Poloxámero/química , Solubilidad , Solventes , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Difracción de Rayos X
4.
Pharmaceutics ; 13(11)2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34834384

RESUMEN

Selective laser sintering (SLS) is a rapid prototyping technique for the production of three-dimensional objects through selectively sintering powder-based layer materials. The aim of the study was to investigate the effect of energy density (ED) and formulation factors on the printability and characteristics of SLS irbesartan tablets. The correlation between formulation factors, ED, and printability was obtained using a decision tree model with an accuracy of 80%. FT-IR results revealed that there was no interaction between irbesartan and the applied excipients. DSC results indicated that irbesartan was present in an amorphous form in printed tablets. ED had a significant influence on tablets' physical, mechanical, and morphological characteristics. Adding lactose monohydrate enabled faster drug release while reducing the possibility for printing with different laser speeds. However, formulations with crospovidone were printable with a wider range of laser speeds. The adjustment of formulation and process parameters enabled the production of SLS tablets with hydroxypropyl methylcellulose with complete release in less than 30 min. The results suggest that a decision tree could be a useful tool for predicting the printability of pharmaceutical formulations. Tailoring the characteristics of SLS irbesartan tablets by ED is possible; however, it needs to be governed by the composition of the whole formulation.

5.
Int J Biol Macromol ; 167: 547-558, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33278438

RESUMEN

The effect of the entrapment procedure of a poorly water soluble drug (ibuprofen) on physicochemical and drug release performances of chitosan/xanthan polyelectrolyte complexes (PECs) was investigated to achieve controlled drug release as the ultimate goal. The formation of PECs for two drug entrapment procedures (before or after the mixing of polymers) at pH 4.6 and 5.6 and three chitosan-to-xanthan mass ratios (1:1, 1:2 and 1:3) was observed by continuous decrease in conductivity during the PECs formation and increased apparent viscosity and hysteresis values. The most extensive crosslinking was observed with ibuprofen added before the PECs formation at pH 4.6 and chitosan-to-xanthan mass ratio 1:1. The PECs prepared at polymers' mass ratios 1:2 and 1:3 had higher yield and drug entrapment efficiency. DSC and FT-IR analysis confirmed ibuprofen entrapment in PECs and the partial disruption of its crystallinity. All ibuprofen release profiles were similar, with 60-70% of drug released after 12 h, mainly by diffusion, but erosion and polymer chain relaxation were also included. Potentially optimal can be considered the PEC prepared at pH 4.6, ibuprofen entrapped before the mixing of polymers at chitosan-to-xanthan mass ratio 1:2, which provided controlled drug release by zero-order kinetics, high yield, and drug entrapment efficiency.


Asunto(s)
Quitosano/química , Ibuprofeno/farmacocinética , Polisacáridos Bacterianos/química , Preparaciones de Acción Retardada , Concentración de Iones de Hidrógeno , Ibuprofeno/química , Polielectrolitos/química , Espectroscopía Infrarroja por Transformada de Fourier , Viscosidad
6.
Int J Biol Macromol ; 148: 942-955, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31954125

RESUMEN

This study investigated the combined influence of pH adjusting agent type (hydrochloric, acetic or lactic acid) and initial pH value (3.6, 4.6, and 5.6) on formation of biocompatible chitosan/xanthan polyelectrolyte complexes (PECs), their characteristics in solid state and influence on in vitro ibuprofen release kinetics. Conductivity measurements and rheological characterization revealed generally higher extent of ionic interactions in PEC dispersions comprising acetic acid and at pH 3.6. Acid type and pH affected significantly the yield and particle size (100-250 µm) of the dried PECs. Differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and powder X-ray diffraction (PXRD) analysis of the solid PECs confirmed exclusively physical (ionic, hydrogen bonds) interactions between chitosan and xanthan gum. PECs prepared with acetic acid at pH 4.6 and 5.6 had enhanced rehydration ability in phosphate buffer pH 7.2, and at PEC-to-drug mass ratio up to 1:2, enabled extended ibuprofen release from hard capsules during 10 h.


Asunto(s)
Quitosano , Portadores de Fármacos , Ibuprofeno/administración & dosificación , Polielectrolitos , Polisacáridos Bacterianos , Quitosano/química , Portadores de Fármacos/química , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Cinética , Polielectrolitos/química , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/ultraestructura , Reología , Solubilidad , Análisis Espectral
7.
J Pharm Sci ; 108(3): 1326-1333, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30395827

RESUMEN

The study is focused on formulation of biocompatible hydrogels with a poorly soluble drug ibuprofen (5%) and comprehensive evaluation and comparison of effect of different bioadhesive polymers on their suitability for application on skin, physical stability during the accelerated and natural aging tests (by performing centrifugation test, light microscopy, differential scanning calorimetry, rheological and pH measurements), and in vitro drug release kinetics. Hydrogels, formulated with xanthan gum 1% (XIB), sodium carboxymethylcellulose 5% (CMCIB), poloxamer 407 16% (PIB), and carbomer 1% (KIB), were soft pseudoplastic semisolids with thixotropy and biocompatible pH. The type of the polymer significantly affected apparent viscosity of the hydrogels and miscibility rate with artificial sweat, their physical stability, and shape, size, and aggregation of the drug crystals and degree of crystallization. The drug release in all investigated hydrogels was diffusion-controlled in accordance with the Higuchi model and sustained for 12 h, with the drug release rate and the amount of drug released depended on the polymer. The described formulation approach enabled discrimination of the hydrogels with unsatisfactory application properties (CMCIB) and physical stability (KIB), and selection of the hydrogel with promising characteristics in terms of all investigated aspects (XIB) which could be considered for further evaluation.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacocinética , Hidrogeles/química , Ibuprofeno/farmacocinética , Polímeros/química , Adhesivos Tisulares/química , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Celulosa/química , Composición de Medicamentos/métodos , Liberación de Fármacos , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Ibuprofeno/administración & dosificación , Ibuprofeno/química , Membranas Artificiales , Piel/química , Piel/metabolismo , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA