Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 257: 119274, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38821456

RESUMEN

Bracken fern (Pteridium spp.) is a highly problematic plant worldwide due to its toxicity in combination with invasive properties on former farmland, in deforested areas and on disturbed natural habitats. The carcinogenic potential of bracken ferns has caused scientific and public concern for six decades. Its genotoxic effects are linked to illudane-type glycosides (ITGs), their aglycons and derivatives. Ptaquiloside is considered the dominating ITG, but with significant contributions from other ITGs. The present review aims to compile evidence regarding environmental pollution by bracken fern ITGs, in the context of their human and animal health implications. The ITG content in bracken fern exhibits substantial spatial, temporal, and chemotaxonomic variation. Consumption of bracken fern as food is linked to human gastric cancer but also causes urinary bladder cancers in bovines browsing on bracken. Genotoxic metabolites are found in milk and meat from bracken fed animals. ITG exposure may also take place via contaminated water with recent data pointing to concentrations at microgram/L-level following rain events. Airborne ITG-exposure from spores and dust has also been documented. ITGs may synergize with major biological and environmental carcinogens like papillomaviruses and Helicobacter pylori to induce cancer, revealing novel instances of chemical and biological co-carcinogenesis. Thus, the emerging landscape from six decades of bracken research points towards a global environmental problem with increasingly complex health implications.


Asunto(s)
Dennstaedtiaceae , Exposición a Riesgos Ambientales , Control de Malezas , Dennstaedtiaceae/química , Factores de Tiempo , Factores de Riesgo , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/toxicidad , Glicósidos/química , Contaminación de Alimentos/análisis , Agua Subterránea/química , Humanos , Animales
2.
Antioxidants (Basel) ; 13(5)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38790693

RESUMEN

Lemon is a fruit rich in antioxidant properties and has several health benefits, namely the reduction of skin edema and anticarcinogenic properties, which are due to its high content of bioactive compounds. Melatonin can improve and preserve the properties of lemon for longer and also has health benefits. The aim of this study was to evaluate the effects of oral administration of lemon juice after melatonin treatment on murinometric parameters of wild-type (WT) mice and transgenic mice carrying human papillomavirus (HPV). Two trials were performed for oral administration of the lemon extract compound: in drinking water and in diet. First of all, lemons were treated by immersion with melatonin at 10 mM. Then, lemons were squeezed, and the juice obtained was freeze-dried and stored to be subsequently added to drinking water or diet, according to the assay. Thus, mice were divided into eight groups in the drink assay (each with n = 5): group 1 (G1, WT, control), group 2 (G2, WT, 1 mL lemon), group 3 (G3, WT, 1.5 mL lemon), group 4 (G4, WT, 2 mL lemon), group 5 (G5, HPV16, control), group 6 (G6, HPV16, 1 mL lemon) group 7 (G6, HPV16, 1.5 mL lemon) and group 8 (G6, HPV16, 2 mL lemon). The diet assay was divided into four groups: group 1 (G1, WT, control), group 2 (G2, WT, 4 mL lemon), group 3 (G3, HPV16, control) and group 4 (G4, HPV16, 4 mL lemon). In the drink assay, the highest concentration of melatonin (308 ng/100 mL) was for groups 4 and 8, while in the food assay, there was only one concentration of melatonin (9.96 ng/g) for groups 2 and 4. Both trials lasted 30 days. During this time, body weight, food and water were recorded. Afterward, they were sacrificed, and samples were collected for different analyses. At the concentrations used, the lemon juice with melatonin had no adverse effects on the animals' health and showed a positive outcome in modifying weight gain and enhancing antioxidant activity in mice. Moreover, a reduction in the incidence of histological lesions was observed in treated animals. Further research is needed to better understand the effects of lemon extract on health and treatment outcomes in this animal model.

3.
Mol Med Rep ; 28(3)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37539743

RESUMEN

Acorns have traditionally been used in the human diet and for the treatment of specific diseases. Therefore, the present study performed a systematic review of studies which investigated the effects of Quercus spp. extracts in cancer prevention and treatment. A systematic literature search was performed for original records which addressed the anticancer effects of Quercus spp. extract in in vitro and in vivo cancer models. Body composition, food consumption, tumor development and/or toxicity were evaluated in in vivo studies, while cytotoxicity was evaluated in in vitro studies. Few studies and low sample sizes presented a challenge in the drawing of solid conclusions. Overall, the results suggested a positive impact of Quercus spp. extract, by reducing cancer development. Therefore, more studies with different cancer cell lines and animal models to address the efficacy of the acorn extracts in several types of cancer are required. Furthermore, the effects of acorn flour, incorporated in the diet, in an animal model of mammary cancer should be evaluated.


Asunto(s)
Neoplasias de la Mama , Quercus , Animales , Humanos , Femenino , Dieta , Alimentos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Semillas
4.
Front Vet Sci ; 10: 1174673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37261110

RESUMEN

Papillomaviruses are small viruses able to cause disease not only in mammalians, but also in birds and reptiles. In recent years, a rising number of papillomaviruses have been identified in dogs and cats, totaling 24 canine papillomavirus (CPV) and six feline papillomavirus (FcaPV). The canine and feline papillomaviruses (CPVs and FcaPVs, respectively) are responsible for multiple lesions in these domestic species but the potential pathological relevance of some recently identified types remains to be determined. CPVs are associated with oral papillomatosis, cutaneous papillomas and viral pigmented plaques, and have been rarely associated with the development of oral and cutaneous squamous cell carcinomas in their canine hosts. FcaPVs are associated with oral papillomas, viral plaques, and Bowenoid in situ carcinomas. The present review provides readers with the more recent advances on dog and cat papillomavirus research, bringing an update on this field to both veterinary practitioners and the virology community at large.

5.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36293226

RESUMEN

The study of human papillomavirus (HPV)-induced carcinogenesis uses multiple in vivo mouse models, one of which relies on the cytokeratin 14 gene promoter to drive the expression of all HPV early oncogenes. This study aimed to determine the HPV16 variant and sublineage present in the K14HPV16 mouse model. This information can be considered of great importance to further enhance this K14HPV16 model as an essential research tool and optimize its use for basic and translational studies. Our study evaluated HPV DNA from 17 samples isolated from 4 animals, both wild-type (n = 2) and HPV16-transgenic mice (n = 2). Total DNA was extracted from tissues and the detection of HPV16 was performed using a qPCR multiplex. HPV16-positive samples were subsequently whole-genome sequenced by next-generation sequencing techniques. The phylogenetic positioning clearly shows K14HPV16 samples clustering together in the sub-lineage A1 (NC001526.4). A comparative genome analysis of K14HPV16 samples revealed three mutations to the human papillomaviruses type 16 sublineage A1 representative strain. Knowledge of the HPV 16 variant is fundamental, and these findings will allow the rational use of this animal model to explore the role of the A1 sublineage in HPV-driven cancer.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Ratones , Animales , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/genética , Queratina-14/genética , Filogenia , Neoplasias del Cuello Uterino/genética , Papillomavirus Humano 16 , Papillomaviridae/genética , Carcinogénesis/genética , Oncogenes
6.
Cancers (Basel) ; 14(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35565345

RESUMEN

High-risk human papillomavirus (HPV) is the etiologic agent of several types of cancer. Mast cells' role as either a driving or opposing force for cancer progression remains controversial. MicroRNAs are dysregulated in several HPV-induced cancers, and can influence mast cell biology. The aim of this study was to evaluate mast cell infiltration and to identify microRNAs potentially regulating this process. Transgenic male mice (K14-HPV16; HPV+) and matched wild-type mice (HPV−) received 7,12-Dimethylbenz[a]anthracene (DMBA) (or vehicle) over 17 weeks. Following euthanasia, chest skin and ear tissue samples were collected. Mast cell infiltration was evaluated by immunohistochemistry. MicroRNAs associated with mast cell infiltration were identified using bioinformatic tools. MicroRNA and mRNA relative expression was evaluated by RT-qPCR. Immunohistochemistry showed increased mast cell infiltration in HPV+ mice (p < 0.001). DMBA did not have any statistically significant influence on this distribution. Ear tissue of HPV+ mice showed increased mast cell infiltration (p < 0.01) when compared with chest skin samples. Additionally, reduced relative expression of miR-125b-5p (p = 0.008, 2−ΔΔCt = 2.09) and miR-223-3p (p = 0.013, 2−ΔΔCt = 4.42) seems to be associated with mast cell infiltration and increased expression of target gene Cxcl10. These results indicate that HPV16 may increase mast cell infiltration by down-regulating miR-223-3p and miR-125b-5p.

7.
Anticancer Res ; 42(5): 2443-2460, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35489755

RESUMEN

AIM: To evaluate the expression of lincRNA-p21, H19, EMX2OS, SNHG12 and MALAT1 in a mouse model of human papillomavirus 16 (HPV16)-induced carcinogenesis and cachexia. MATERIALS AND METHODS: Chest skin, ear, tongue, penis and gastrocnemius muscle samples from wild-type mice (HPV-) and K14-HPV16 male mice (HPV+) were collected to evaluate the expression of the selected lncRNAs using real-time PCR (qPCR). RESULTS: In chest skin and ear, H19, SNHG12, EMX2OS and lincRNA-p21 were down-regulated in HPV+ versus HPV- mice. In tongue and penile tissues, there was only down-regulation of lincRNA-p21 in HPV+ mice. Additionally, in penile tissue, lincRNA-p21 expression decreased in HPV-induced lesions comparing with normal tissues. In gastrocnemius muscle, MALAT1 was up-regulated and lincRNA-p21 was down-regulated in HPV+ versus HPV-mice. CONCLUSION: H19, SNHG12, EMX2OS and lincRNA-p21 may be involved in HPV-induced carcinogenesis. In addition, MALAT1 and lincRNA-p21 may play a role in muscle wasting and contribute to cancer cachexia.


Asunto(s)
Infecciones por Papillomavirus , ARN Largo no Codificante , Animales , Caquexia/genética , Carcinogénesis/genética , Femenino , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Humanos , Masculino , Ratones , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
8.
Front Vet Sci ; 9: 860838, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252430

RESUMEN

[This corrects the article DOI: 10.3389/fvets.2021.758720.].

9.
J Am Assoc Lab Anim Sci ; 61(1): 89-95, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34847984

RESUMEN

Precise oral dosing in rodents is usually achieved by intragastric gavage. If performed incorrectly due to technical difficulties, inexperience, or animal resistance, oral gavage may have animal welfare implications such as esophageal and gastric rupture and aspiration. The stress that is induced by this procedure can also lead to confounding results. In several animal models, drug vehicles must be sugar-free, deliver drugs in a specific formulation, and sometimes supply water. Gelatin has all of these properties. The current study aimed to evaluate the use of gelatin vehicles with different sensory features as an alternative to oral gavage. We investigated the time taken by 2 different inbred mouse strains, FVB/N and C57BL/6J, to ingest sugar-free gelatin pellets of varying flavors. Results showed that FVB/N mice took more time to eat the unflavored, strawberry and diet-flavored gelatin pellets than did C57BL/6J mice. Both strains showed low preference for lemon flavor, with the same ingestion times after the second day. This study showed that the C57BL/6J mice are more likely to eat gelatin than are FVB/N mice, and that the 2 strains of mice show a lower preference for lemon flavoring as compared with other flavors. This method of voluntarily oral administration offers an alternative to gavage for studies that use oral dosing studies.


Asunto(s)
Aromatizantes , Alimentos , Gelatina , Administración Oral , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos
10.
Front Vet Sci ; 8: 758720, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34796228

RESUMEN

Bovine papillomavirus (BPV) are a cause for global concern due to their wide distribution and the wide range of benign and malignant diseases they are able to induce. Those lesions include cutaneous and upper digestive papillomas, multiple histological types of urinary bladder cancers-most often associated with BPV1 and BPV2-and squamous cell carcinomas of the upper digestive system, associated with BPV4. Clinical, epidemiological and experimental evidence shows that exposure to bracken fern (Pteridium spp.) and other related ferns plays an important role in allowing viral persistence and promoting the malignant transformation of early viral lesions. This carcinogenic potential has been attributed to bracken illudane glycoside compounds with immune suppressive and mutagenic properties, such as ptaquiloside. This review addresses the role of BPV in tumorigenesis and its interactions with bracken illudane glycosides. Current data indicates that inactivation of cytotoxic T lymphocytes and natural killer cells by bracken fern illudanes plays a significant role in allowing viral persistence and lesion progression, while BPV drives unchecked cell proliferation and allows the accumulation of genetic damage caused by chemical mutagens. Despite limited progress in controlling bracken infestation in pasturelands, bracken toxins remain a threat to animal health. The number of recognized BPV types has steadily increased over the years and now reaches 24 genotypes with different pathogenic properties. It remains essential to widen the available knowledge concerning BPV and its synergistic interactions with bracken chemical carcinogens, in order to achieve satisfactory control of the livestock losses they induce worldwide.

11.
Pathogens ; 10(10)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34684173

RESUMEN

A growing proportion of oropharyngeal squamous cell carcinomas (OPSCC) are associated with infection by high-risk human papillomavirus (HPV). For reasons that remain largely unknown, HPV+OPSCC is significantly more common in men than in women. This study aims to determine the incidence of OPSCC in male and female HPV16-transgenic mice and to explore the role of female sex hormone receptors in the sexual predisposition for HPV+ OPSCC. The tongues of 30-weeks-old HPV16-transgenic male (n = 80) and female (n = 90) and matched wild-type male (n = 10) and female (n = 10) FVB/n mice were screened histologically for intraepithelial and invasive lesions in 2017 at the Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Portugal. Expression of estrogen receptors alpha (ERα) and beta (ERß), progesterone receptors (PR) and matrix metalloproteinase 2 (MMP2) was studied immunohistochemically. Collagen remodeling was studied using picrosirius red. Female mice showed robust ERα and ERß expression in intraepithelial and invasive lesions, which was accompanied by strong MMP2 expression and marked collagen remodeling. Male mice showed minimal ERα, ERß and MMP2 expression and unaltered collagen patterns. These results confirm the association of HPV16 with tongue base cancer in both sexes. The higher cancer incidence in female versus male mice contrasts with data from OPSCC patients and is associated with enhanced ER expression via MMP2 upregulation.

12.
Cancers (Basel) ; 13(3)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530343

RESUMEN

Penile cancer is an uncommon malignancy that occurs most frequently in developing countries. Two pathways for penile carcinogenesis are currently recognized: one driven by human papillomavirus (HPV) infection and another HPV-independent route, associated with chronic inflammation. Progress on the clinical management of this disease has been slow, partly due to the lack of preclinical models for translational research. However, exciting recent developments are changing this landscape, with new in vitro and in vivo models becoming available. These include mouse models for HPV+ and HPV- penile cancer and multiple cell lines representing HPV- lesions. The present review addresses these new advances, summarizing available models, comparing their characteristics and potential uses and discussing areas that require further improvement. Recent breakthroughs achieved using these models are also discussed, particularly those developments pertaining to HPV-driven cancer. Two key aspects that still require improvement are the establishment of cell lines that can represent HPV+ penile carcinomas and the development of mouse models to study metastatic disease. Overall, the growing array of in vitro and in vivo models for penile cancer provides new and useful tools for researchers in the field and is expected to accelerate pre-clinical research on this disease.

13.
Int J Mol Sci ; 21(14)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708666

RESUMEN

Cancer cachexia is a multifactorial syndrome characterized by general inflammation, weight loss and muscle wasting, partly mediated by ubiquitin ligases such as atrogin-1, encoded by Fbxo32. Cancers induced by high-risk human papillomavirus (HPV) include anogenital cancers and some head-and-neck cancers and are often associated with cachexia. The aim of this study was to assess the presence of cancer cachexia in HPV16-transgenic mice with or without exposure to the chemical carcinogen 7,12-dimethylbenz(a)anthracene (DMBA). Male mice expressing the HPV16 early region under the control of the cytokeratin 14 gene promoter (K14-HPV16; HPV+) and matched wild-type mice (HPV-) received DMBA (or vehicle) topically over 17 weeks of the experiment. Food intake and body weight were assessed weekly. The gastrocnemius weights and Fbxo32 expression levels were quantified at sacrifice time. HPV-16-associated lesions in different anatomic regions were classified histologically. Although unexposed HPV+ mice showed higher food intake than wild-type matched group (p < 0.01), they presented lower body weights (p < 0.05). This body weight trend was more pronounced when comparing DMBA-exposed groups (p < 0.01). The same pattern was observed in the gastrocnemius weights (between the unexposed groups: p < 0.05; between the exposed groups: p < 0.001). Importantly, DMBA reduced body and gastrocnemius weights (p < 0.01) when comparing the HPV+ groups. Moreover, the Fbxo32 gene was overexpressed in DMBA-exposed HPV+ compared to control mice (p < 0.05). These results show that K14-HPV16 mice closely reproduce the anatomic and molecular changes associated with cancer cachexia and may be a good model for preclinical studies concerning the pathogenesis of this syndrome.


Asunto(s)
Caquexia/etiología , Papillomavirus Humano 16/fisiología , Neoplasias/complicaciones , Infecciones por Papillomavirus/complicaciones , Animales , Peso Corporal , Caquexia/genética , Caquexia/patología , Caquexia/virología , Modelos Animales de Enfermedad , Expresión Génica , Papillomavirus Humano 16/genética , Humanos , Masculino , Ratones Transgénicos , Proteínas Musculares/genética , Neoplasias/genética , Neoplasias/patología , Neoplasias/virología , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Proteínas Ligasas SKP Cullina F-box/genética
14.
J Pathol ; 251(4): 411-419, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32488868

RESUMEN

Penile cancer is an under-studied disease that occurs more commonly in developing countries and 30-50% of cases show high-risk human papillomavirus (HPV) infection. Therapeutic advances are slow, largely due to the absence of animal models for translational research. Here, we report the first mouse model for HPV-related penile cancer. Ten-week-old mice expressing all the HPV16 early genes under control of the cytokeratin 14 (Krt14) gene promoter and matched wild-type controls were exposed topically to dimethylbenz(a)anthracene (DMBA) or vehicle for 16 weeks. At 30 weeks of age, mice were sacrificed for histological analysis. Expression of Ki67, cytokeratin 14, and of the HPV16 oncogenes E6 and E7 was confirmed using immunohistochemistry and quantitative PCR, respectively. HPV16-transgenic mice developed intraepithelial lesions including condylomas and penile intraepithelial neoplasia (PeIN). Lesions expressed cytokeratin 14 and the HPV16 oncogenes E6 and E7 and showed deregulated cell proliferation, demonstrated by Ki67-positive supra-basal cells. HPV16-transgenic mice exposed to DMBA showed increased PeIN incidence and squamous cell carcinoma. Malignant lesions showed varied histological features closely resembling those of HPV-associated human penile cancers. Wild-type mice showed no malignant or pre-malignant lesions even when exposed to DMBA. These observations provide the first experimental evidence to support the etiological role of HPV16 in penile carcinogenesis. Importantly, this is the first mouse model to recapitulate key steps of HPV-related penile carcinogenesis and to reproduce morphological and molecular features of human penile cancer, providing a unique in vivo tool for studying its biology and advancing basic and translational research. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Carcinoma in Situ/virología , Carcinoma de Células Escamosas/virología , Papillomavirus Humano 16/fisiología , Infecciones por Papillomavirus/virología , Neoplasias del Pene/virología , Animales , Carcinogénesis , Carcinoma in Situ/patología , Carcinoma de Células Escamosas/patología , Proliferación Celular , Modelos Animales de Enfermedad , Papillomavirus Humano 16/genética , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/patología , Neoplasias del Pene/patología , Pene/patología , Pene/virología , Distribución Aleatoria , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
15.
J Pathol ; 251(1): 4-11, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31994197

RESUMEN

Head and neck squamous cell carcinomas (HNSCCs) associated with human papillomavirus (HPV) occur specifically in the tonsils and the tongue base, but the reasons for this specificity remain unknown. We studied the distribution of oral and pharyngeal lesions in HPV16-transgenic mice where the expression of all the HPV16 early genes is targeted to keratinising squamous epithelia by the cytokeratin 14 (Krt14) gene promoter. At 30 weeks of age, 100% of mice developed low- and high-grade intraepithelial dysplasia at multiple sites. Twenty per cent of animals developed invasive cancers that remarkably were restricted to the tongue base, in association with the circumvallate papilla. The lesions maintained expression of CK14 (KRT14) and the HPV16 E6 and E7 oncogenes, and displayed deregulated cell proliferation and up-regulation of p16INK4A . Malignant lesions were poorly differentiated and destroyed the tongue musculature. We hypothesised that the tongue base area might contain a transformation zone similar to those observed in the cervix and anus, explaining why HPV-positive cancers target that area specifically. Immunohistochemistry for two transformation zone markers, CK7 (KRT7) and p63 (TP63), revealed a squamocolumnar junction in the terminal duct of von Ebner's gland, composed of CK7+ luminal cells and p63+ basal cells. Dysplastic and invasive lesions retained diffuse p63 expression but only scattered positivity for CK7. Site-specific HPV-induced carcinogenesis in the tongue base may be explained by the presence of a transformation zone in the circumvallate papilla. This mouse model reproduces key morphological and molecular features of HPV-positive HNSCC, providing a unique in vivo tool for basic and translational research. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Carcinoma de Células Escamosas/virología , Neoplasias de Cabeza y Cuello/virología , Papillomavirus Humano 16/genética , Papillomaviridae/genética , Animales , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/patología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , ADN Viral/genética , Femenino , Neoplasias de Cabeza y Cuello/patología , Ratones Transgénicos , Infecciones por Papillomavirus/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...