Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Neurochem Int ; 142: 104922, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33242539

RESUMEN

Approaches utilizing multiple analysis techniques on a single sample are highly desirable in research, especially to reduce the number of animals and obtain the maximum information. Golgi-Cox staining is a widely used method for characterizing axon and dendritic morphology and several attempts to combine this technique with immunofluorescence and transmission electron microscopy have been proposed. With few exceptions, most of the protocols were characterized by a high degree of complexity and low reproducibility. Here we show a simplified procedure of perfusion, fixation and staining of brain tissues that allows Golgi-Cox staining, immunofluorescence and transmission electron microscopy in the same sample, to obtain high-quality images with a low-cost procedure. The main novelty in this protocol is the possibility of performing Golgi-Cox staining after the perfusion and post-fixation of brain tissue with a buffered solution containing, not only formaldehyde, but also glutaraldehyde. This renders the tissue suitable for electron microscopy, but it is also compatible with immunofluorescence staining. This combined protocol can be used in most neuroscience laboratories as it does not require special equipment and skills. This protocol will be useful in a broad range of neuroscience topics to study morphological changes during brain development and plasticity in physiological and pathological conditions.


Asunto(s)
Técnica del Anticuerpo Fluorescente/normas , Aparato de Golgi/química , Aparato de Golgi/ultraestructura , Microscopía Electrónica de Transmisión/normas , Coloración y Etiquetado/normas , Fijación del Tejido/normas , Animales , Técnica del Anticuerpo Fluorescente/métodos , Colorantes Fluorescentes/análisis , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión/métodos , Reproducibilidad de los Resultados , Coloración y Etiquetado/métodos , Fijación del Tejido/métodos
3.
Proc Natl Acad Sci U S A ; 117(41): 25212-25218, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32999065

RESUMEN

The regrowth of severed axons is fundamental to reestablish motor control after spinal-cord injury (SCI). Ongoing efforts to promote axonal regeneration after SCI have involved multiple strategies that have been only partially successful. Our study introduces an artificial carbon-nanotube based scaffold that, once implanted in SCI rats, improves motor function recovery. Confocal microscopy analysis plus fiber tracking by magnetic resonance imaging and neurotracer labeling of long-distance corticospinal axons suggest that recovery might be partly attributable to successful crossing of the lesion site by regenerating fibers. Since manipulating SCI microenvironment properties, such as mechanical and electrical ones, may promote biological responses, we propose this artificial scaffold as a prototype to exploit the physics governing spinal regenerative plasticity.


Asunto(s)
Materiales Biomiméticos , Traumatismos Vertebrales/terapia , Andamios del Tejido , Animales , Femenino , Microscopía Electrónica de Rastreo , Nanotecnología , Ratas , Ratas Wistar , Traumatismos Vertebrales/diagnóstico por imagen
4.
ACS Chem Neurosci ; 11(2): 162-172, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31854971

RESUMEN

Peptides constituted of backbone homologated α-amino acids combined with carbon materials offer interesting possibilities in the modulation of cellular functions. In this work, we have prepared diphenylalanine ß- and γ-peptides and conjugated them to carbon nanotubes (CNTs). These hybrids were able to self-assemble into fibrillar dendritic structures enabling the growth of primary hippocampal cells and the modulation of their neuronal functions. In particular, following the deposition of the different nanomaterials on glass substrates, we have evaluated their effects on circuit function and geometry. The geometrical restrictions due to CNT nucleated nodes allowed growth of neuronal networks with control over network geometry, and exploring its functional impact. In diverse applications from basic neuroscience, the presence of CNT nodes may be exploited in brain interfaces able to convey highly localized electrical stimuli.


Asunto(s)
Nanotubos de Carbono , Red Nerviosa , Neuronas , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos , Animales , Materiales Biocompatibles , Hipocampo , Ratas
5.
Neurobiol Dis ; 132: 104568, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31394203

RESUMEN

Chronic exposure to high circulating levels of glucocorticoids (GCs) may be a key risk factor for Alzheimer's Disease (AD) development and progression. In addition, hyper-activation of glucocorticoid receptors (GRs) induces brain alterations comparable to those produced by AD. In transgenic mouse models of AD, GCs increase the production of the most important and typical hallmarks of this dementia such as: Aß40, Aß42 and tau protein (both the total tau and its hyperphosphorylated isoforms). Moreover, GCs in brain are pivotal regulators of dendritic spine turnover and microglia activity, two phenomena strongly altered in AD. Although it is well-established that GCs primes the neuroinflammatory response in the brain to some stimuli, it is unknown whether or how GRs modulates dendritic spine plasticity and microglia activity in AD. In this study, we evaluated, using combined Golgi Cox and immunofluorescence techniques, the role of GR agonists and antagonists on dendritic spine plasticity and microglia activation in hippocampus of 3xTg-AD mice. We found that dexamethasone, an agonist of GRs, was able to significantly reduce dendritic spine density and induced proliferation and activation of microglia in CA1 region of hippocampus of 3xTg-AD mice at 6 and 10 months of age. On the contrary, the treatment with mifepristone, an antagonist of GRs, strongly enhanced dendritic spine density, decreased microglia density and improved the behavioural performance of 3xTg-AD mice. Additionally, primary microglial cells in vitro were directly activated by dexamethasone. Together, these data demonstrate that stress exacerbates AD and promotes a rapid progression of the pathology acting on both neurons and glial cells, supporting an important pro-inflammatory role of GC within CNS in AD. Consequently, these results further strengthen the need to test clinical interventions that correct GCs dysregulation as promising therapeutic strategy to delay the onset and slow down the progression of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Espinas Dendríticas/patología , Microglía/patología , Plasticidad Neuronal/fisiología , Receptores de Glucocorticoides/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Antiinflamatorios/farmacología , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Dexametasona/farmacología , Modelos Animales de Enfermedad , Antagonistas de Hormonas/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Presenilina-1/genética , Receptores de Glucocorticoides/efectos de los fármacos , Proteínas tau/genética
6.
J Neuroinflammation ; 16(1): 127, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31238967

RESUMEN

BACKGROUND: Synaptic dysfunction, named synaptopathy, due to inflammatory status of the central nervous system (CNS) is a recognized factor potentially underlying both motor and cognitive dysfunctions in neurodegenerative diseases. To gain knowledge on the mechanistic interplay between local inflammation and synapse changes, we compared two diverse inflammatory paradigms, a cytokine cocktail (CKs; IL-1ß, TNF-α, and GM-CSF) and LPS, and their ability to tune GABAergic current duration in spinal cord cultured circuits. METHODS: We exploit spinal organotypic cultures, single-cell electrophysiology, immunocytochemistry, and confocal microscopy to explore synaptic currents and resident neuroglia reactivity upon CK or LPS incubation. RESULTS: Local inflammation in slice cultures induced by CK or LPS stimulations boosts network activity; however, only CKs specifically reduced GABAergic current duration. We pharmacologically investigated the contribution of GABAAR α-subunits and suggested that a switch of GABAAR α1-subunit might have induced faster GABAAR decay time, weakening the inhibitory transmission. CONCLUSIONS: Lower GABAergic current duration could contribute to providing an aberrant excitatory transmission critical for pre-motor circuit tasks and represent a specific feature of a CK cocktail able to mimic an inflammatory reaction that spreads in the CNS. Our results describe a selective mechanism that could be triggered during specific inflammatory stress.


Asunto(s)
Citocinas/toxicidad , GABAérgicos/farmacocinética , Inflamación/inducido químicamente , Transmisión Sináptica/efectos de los fármacos , Animales , Citocinas/inmunología , Inflamación/inmunología , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Médula Espinal , Transmisión Sináptica/inmunología
7.
Nano Lett ; 19(5): 2858-2870, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30983361

RESUMEN

Synapses compute and transmit information to connect neural circuits and are at the basis of brain operations. Alterations in their function contribute to a vast range of neuropsychiatric and neurodegenerative disorders and synapse-based therapeutic intervention, such as selective inhibition of synaptic transmission, may significantly help against serious pathologies. Graphene is a two-dimensional nanomaterial largely exploited in multiple domains of science and technology, including biomedical applications. In hippocampal neurons in culture, small graphene oxide nanosheets (s-GO) selectively depress glutamatergic activity without altering cell viability. Glutamate is the main excitatory neurotransmitter in the central nervous system and growing evidence suggests its involvement in neuropsychiatric disorders. Here we demonstrate that s-GO directly targets the release of presynaptic vesicle. We propose that s-GO flakes reduce the availability of transmitter, via promoting its fast release and subsequent depletion, leading to a decline ofglutamatergic neurotransmission. We injected s-GO in the hippocampus in vivo, and 48 h after surgery ex vivo patch-clamp recordings from brain slices show a significant reduction in glutamatergic synaptic activity in respect to saline injections.


Asunto(s)
Grafito/farmacología , Nanoestructuras/química , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuronas/efectos de los fármacos , Animales , Animales Recién Nacidos , Fármacos actuantes sobre Aminoácidos Excitadores/síntesis química , Fármacos actuantes sobre Aminoácidos Excitadores/química , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Ácido Glutámico/metabolismo , Grafito/síntesis química , Grafito/química , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Nanoestructuras/uso terapéutico , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/metabolismo , Cultivo Primario de Células , Puntos Cuánticos/química , Ratas , Ratas Wistar , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos
8.
Acta Biomater ; 73: 285-301, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29621637

RESUMEN

Current strategies in Central Nervous System (CNS) repair focus on the engineering of artificial scaffolds for guiding and promoting neuronal tissue regrowth. Ideally, one should combine such synthetic structures with stem cell therapies, encapsulating progenitor cells and instructing their differentiation and growth. We used developments in the design, synthesis, and characterization of polysaccharide-based bioactive polymeric materials for testing the ideal composite supporting neuronal network growth, synapse formation and stem cell differentiation into neurons and motor neurons. Moreover, we investigated the feasibility of combining these approaches with engineered mesenchymal stem cells able to release neurotrophic factors. We show here that composite bio-constructs made of Chitlac, a Chitosan derivative, favor hippocampal neuronal growth, synapse formation and the differentiation of progenitors into the proper neuronal lineage, that can be improved by local and continuous delivery of neurotrophins. STATEMENT OF SIGNIFICANCE: In our work, we characterized polysaccharide-based bioactive platforms as biocompatible materials for nerve tissue engineering. We show that Chitlac-thick substrates are able to promote neuronal growth, differentiation, maturation and formation of active synapses. These observations support this new material as a promising candidate for the development of complex bio-constructs promoting central nervous system regeneration. Our novel findings sustain the exploitation of polysaccharide-based scaffolds able to favour neuronal network reconstruction. Our study shows that Chitlac-thick may be an ideal candidate for the design of biomaterial scaffolds enriched with stem cell therapies as an innovative approach for central nervous system repair.


Asunto(s)
Neuronas/citología , Neuronas/efectos de los fármacos , Polisacáridos/química , Células Madre/citología , Ingeniería de Tejidos/métodos , Animales , Materiales Biocompatibles , Técnicas de Cultivo de Célula , Diferenciación Celular , Células Cultivadas , Quitosano/química , Femenino , Vidrio , Hipocampo/citología , Hidrogeles , Microscopía de Fuerza Atómica , Microscopía Confocal , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Factores de Crecimiento Nervioso , Regeneración Nerviosa , Neurogénesis , Técnicas de Placa-Clamp , Fenotipo , Polímeros/química , Porosidad , Ratas , Electricidad Estática , Andamios del Tejido/química
9.
Sci Adv ; 2(7): e1600087, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27453939

RESUMEN

In modern neuroscience, significant progress in developing structural scaffolds integrated with the brain is provided by the increasing use of nanomaterials. We show that a multiwalled carbon nanotube self-standing framework, consisting of a three-dimensional (3D) mesh of interconnected, conductive, pure carbon nanotubes, can guide the formation of neural webs in vitro where the spontaneous regrowth of neurite bundles is molded into a dense random net. This morphology of the fiber regrowth shaped by the 3D structure supports the successful reconnection of segregated spinal cord segments. We further observed in vivo the adaptability of these 3D devices in a healthy physiological environment. Our study shows that 3D artificial scaffolds may drive local rewiring in vitro and hold great potential for the development of future in vivo interfaces.


Asunto(s)
Nanotubos de Carbono/química , Médula Espinal/trasplante , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Técnicas de Cultivo de Célula , Estimulación Eléctrica , Fenómenos Electrofisiológicos , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microscopía Electrónica de Rastreo , Ratas , Ratas Wistar , Médula Espinal/citología , Médula Espinal/fisiología , Ingeniería de Tejidos , Corteza Visual/citología , Corteza Visual/metabolismo
10.
J Physiol ; 594(13): 3827-40, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27098371

RESUMEN

KEY POINTS: Increased environmental risk factors in conjunction with genetic susceptibility have been proposed with respect to the remarkable variations in mortality in amyotrophic lateral sclerosis (ALS). In vitro models allow the investigation of the genetically modified counter-regulator of motoneuron toxicity and may help in addressing ALS therapy. Spinal organotypic slice cultures from a mutant form of human superoxide dismutase 1 (SOD1G93A) mouse model of ALS allow the detection of altered glycinergic inhibition in spinal microcircuits. This altered inhibition improved spinal cord excitability, affecting motor outputs in early SOD1(G93A) pathogenesis. ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset neurological disease characterized by a progressive degeneration of motoneurons (MNs). In a previous study, we developed organotypic spinal cultures from an ALS mouse model expressing a mutant form of human superoxide dismutase 1 (SOD1(G93A) ). We reported the presence of a significant synaptic rearrangement expressed by these embryonic cultured networks, which may lead to the altered development of spinal synaptic signalling, which is potentially linked to the adult disease phenotype. Recent studies on the same ALS mouse model reported a selective loss of glycinergic innervation in cultured MNs, suggestive of a contribution of synaptic inhibition to MN dysfunction and degeneration. In the present study, we further exploit organotypic cultures from wild-type and SOD1(G93A) mice to investigate the development of glycine-receptor-mediated synaptic currents recorded from the interneurons of the premotor ventral circuits. We performed single cell electrophysiology, immunocytochemistry and confocal microscopy and suggest that GABA co-release may speed the decay of glycine responses altering both temporal precision and signal integration in SOD1(G93A) developing networks at the postsynaptic site. Our hypothesis is supported by the finding of an increased MN bursting activity in immature SOD1(G93A) spinal cords and by immunofluorescence microscopy detection of a longer persistence of GABA in SOD1(G93A) glycinergic terminals in cultured and ex vivo spinal slices.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Interneuronas/fisiología , Médula Espinal/fisiología , Superóxido Dismutasa-1/genética , Ácido gamma-Aminobutírico/fisiología , Animales , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Ratones Transgénicos , Receptores de Glicina/fisiología , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...