Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Neurosci ; 43(8): 1414-1421, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36650059

RESUMEN

Impulsivity refers to the tendency to act prematurely or without forethought, and excessive impulsivity is a key problem in many neuropsychiatric disorders. Since the pre-supplementary motor area (pre-SMA) has been implicated in inhibitory control, this region may also contribute to impulsivity. Here, we examined whether functional recruitment of pre-SMA may contribute to risky choice behavior (state impulsivity) during sequential gambling and its relation to self-reported trait impulsivity. To this end, we performed task-based functional MRI (fMRI) after low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) of the pre-SMA. We expected low-frequency rTMS to modulate task-related engagement of the pre-SMA and, hereby, tune the tendency to make risky choices. Twenty-four healthy volunteers (12 females; age range, 19-52 years) received real or sham-rTMS on separate days in counterbalanced order. Thereafter, participants performed a sequential gambling task with concurrently increasing stakes and risk during whole-brain fMRI. In the sham-rTMS session, self-reported trait impulsivity scaled positively with state impulsivity (riskier choice behavior) during gambling. The higher the trait impulsivity, the lower was the task-related increase in pre-SMA activity with increasingly risky choices. Following real-rTMS, low-impulsivity participants increased their preference for risky choices, while the opposite was true for high-impulsivity participants, resulting in an overall decoupling of trait impulsivity and state impulsivity during gambling. This rTMS-induced behavioral shift was mirrored in the rTMS-induced change in pre-SMA activation. These results provide converging evidence for a causal link between the level of task-related pre-SMA activity and the propensity for impulsive risk-taking behavior in the context of sequential gambling.SIGNIFICANCE STATEMENT Impulsivity is a personal trait characterized by a tendency to act prematurely or without forethought, and excessive impulsivity is a key problem in many neuropsychiatric disorders. Here we provide evidence that the pre-supplementary motor area (pre-SMA) is causally involved in implementing general impulsive tendencies (trait impulsivity) into actual behavior (state impulsivity). Participants' self-reported impulsivity levels (trait impulsivity) were reflected in their choice behavior (state impulsivity) when involved in a sequential gambling task. This relationship was uncoupled after perturbing the pre-SMA with repetitive transcranial stimulation (rTMS). This effect was contingent on trait impulsivity and was echoed in rTMS-induced changes in pre-SMA activity. Pre-SMA is key in translating trait impulsivity into behavior, possibly by integrating prefrontal goals with corticostriatal motor control.


Asunto(s)
Juego de Azar , Corteza Motora , Femenino , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Corteza Motora/fisiología , Conducta Impulsiva , Estimulación Magnética Transcraneal/métodos , Asunción de Riesgos
2.
Front Psychol ; 13: 989495, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36329745

RESUMEN

People are better at approaching appetitive cues signaling reward and avoiding aversive cues signaling punishment than vice versa. This action bias has previously been shown in approach-avoidance tasks involving arm movements in response to appetitive or aversive cues. It is not known whether appetitive or aversive stimuli also bias more distal dexterous actions, such as gripping and slipping, in a similar manner. To test this hypothesis, we designed a novel task involving grip force control (gripping and slipping) to probe gripping-related approach and avoidance behavior. 32 male volunteers, aged 18-40 years, were instructed to either grip ("approach") or slip ("avoid") a grip-force device with their right thumb and index finger at the sight of positive or negative images. In one version of this pincer grip task, participants were responding to graspable objects and in another version of the task they were responding to happy or angry faces. Bayesian repeated measures Analysis of variance revealed extreme evidence for an interaction between response type and cue valence (Bayes factor = 296). Participants were faster to respond in affect-congruent conditions ("approach appetitive," "avoid aversive") than in affect-incongruent conditions ("approach aversive," "avoid appetitive"). This bias toward faster response times for affect-congruent conditions was present regardless of whether it was a graspable object or a face signaling valence. Since our results mirror the approach and avoidance effects previously observed for arm movements, we conclude that a tendency favoring affectively congruent cue-response mappings is an inherent feature of motor control and thus also includes precision grip.

3.
Front Psychiatry ; 13: 809807, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444571

RESUMEN

Background: Children born to parents with severe mental illness have gained more attention during the last decades because of increasing evidence documenting that these children constitute a population with an increased risk of developing mental illness and other negative life outcomes. Because of high-quality research with cohorts of offspring with familial risk and increased knowledge about gene-environment interactions, early interventions and preventive strategies are now being developed all over the world. Adolescence is a period characterized by massive changes, both in terms of physical, neurologic, psychological, social, and behavioral aspects. It is also the period of life with the highest risk of experiencing onset of a mental disorder. Therefore, investigating the impact of various risk and resilience factors in adolescence is important. Methods: The Danish High-Risk and Resilience Study started data collection in 2012, where 522 7-year-old children were enrolled in the first wave of the study, the VIA 7 study. The cohort was identified through Danish registers based on diagnoses of the parents. A total of 202 children had a parent diagnosed with schizophrenia, 120 children had a parent diagnosed with bipolar disorder, and 200 children had parents without these diagnoses. At age 11 years, all children were assessed for the second time in the VIA 11 study, with a follow-up retention rate of 89%. A comprehensive assessment battery covering domains of psychopathology, neurocognition, social cognition and behavior, motor development and physical health, genetic analyses, attachment, stress, parental functioning, and home environment was carried out at each wave. Magnetic resonance imaging scans of the brain and electroencephalograms were included from age 11 years. This study protocol describes the third wave of assessment, the VIA 15 study, participants being 15 years of age and the full, 3-day-long assessment battery this time including also risk behavior, magnetoencephalography, sleep, and a white noise paradigm. Data collection started on May 1, 2021. Discussion: We will discuss the importance of longitudinal studies and cross-sectional data collection and how studies like this may inform us about unmet needs and windows of opportunity for future preventive interventions, early illness identification, and treatment in the future.

4.
Mov Disord ; 37(3): 479-489, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35114035

RESUMEN

BACKGROUND: Parkinson's disease (PD) causes a loss of neuromelanin-positive, noradrenergic neurons in the locus coeruleus (LC), which has been implicated in nonmotor dysfunction. OBJECTIVES: We used "neuromelanin sensitive" magnetic resonance imaging (MRI) to localize structural disintegration in the LC and its association with nonmotor dysfunction in PD. METHODS: A total of 42 patients with PD and 24 age-matched healthy volunteers underwent magnetization transfer weighted (MTw) MRI of the LC. The contrast-to-noise ratio of the MTw signal (CNRMTw ) was used as an index of structural LC integrity. We performed slicewise and voxelwise analyses to map spatial patterns of structural disintegration, complemented by principal component analysis (PCA). We also tested for correlations between regional CNRMTw and severity of nonmotor symptoms. RESULTS: Mean CNRMTw of the right LC was reduced in patients relative to controls. Voxelwise and slicewise analyses showed that the attenuation of CNRMTw was confined to the right mid-caudal LC and linked regional CNRMTw to nonmotor symptoms. CNRMTw attenuation in the left mid-caudal LC was associated with the orthostatic drop in systolic blood pressure, whereas CNRMTw attenuation in the caudal most portion of right LC correlated with apathy ratings. PCA identified a bilateral component that was more weakly expressed in patients. This component was characterized by a gradient in CNRMTw along the rostro-caudal and dorso-ventral axes of the nucleus. The individual expression score of this component reflected the overall severity of nonmotor symptoms. CONCLUSION: A spatially heterogeneous disintegration of LC in PD may determine the individual expression of specific nonmotor symptoms such as orthostatic dysregulation or apathy. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.


Asunto(s)
Neuronas Adrenérgicas , Enfermedad de Parkinson , Neuronas Adrenérgicas/patología , Humanos , Locus Coeruleus/metabolismo , Imagen por Resonancia Magnética/métodos , Movimiento , Enfermedad de Parkinson/complicaciones
5.
PLoS Comput Biol ; 17(9): e1009217, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34499635

RESUMEN

Ergodicity describes an equivalence between the expectation value and the time average of observables. Applied to human behaviour, ergodic theories of decision-making reveal how individuals should tolerate risk in different environments. To optimize wealth over time, agents should adapt their utility function according to the dynamical setting they face. Linear utility is optimal for additive dynamics, whereas logarithmic utility is optimal for multiplicative dynamics. Whether humans approximate time optimal behavior across different dynamics is unknown. Here we compare the effects of additive versus multiplicative gamble dynamics on risky choice. We show that utility functions are modulated by gamble dynamics in ways not explained by prevailing decision theories. Instead, as predicted by time optimality, risk aversion increases under multiplicative dynamics, distributing close to the values that maximize the time average growth of in-game wealth. We suggest that our findings motivate a need for explicitly grounding theories of decision-making on ergodic considerations.


Asunto(s)
Toma de Decisiones , Humanos , Riesgo
6.
Mov Disord ; 36(5): 1180-1190, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33427336

RESUMEN

BACKGROUND: Motor-related brain activity in Parkinson's disease has been investigated in a multitude of functional neuroimaging studies, which often yielded apparently conflicting results. Our previous meta-analysis did not resolve inconsistencies regarding cortical activation differences in Parkinson's disease, which might be related to the limited number of studies that could be included. Therefore, we conducted a revised meta-analysis including a larger number of studies. The objectives of this study were to elucidate brain areas that consistently show abnormal motor-related activation in Parkinson's disease and to reveal their functional connectivity profiles using meta-analytic approaches. METHODS: We applied a quantitative meta-analysis of functional neuroimaging studies testing limb movements in Parkinson's disease comprising data from 39 studies, of which 15 studies (285 of 571 individual patients) were published after the previous meta-analysis. We also conducted meta-analytic connectivity modeling to elucidate the connectivity profiles of areas showing abnormal activation. RESULTS: We found consistent motor-related underactivation of bilateral posterior putamen and cerebellum in Parkinson's disease. Primary motor cortex and the supplementary motor area also showed deficient activation, whereas cortical regions localized directly anterior to these areas expressed overactivation. Connectivity modeling revealed that areas showing decreased activation shared a common pathway through the posterior putamen, whereas areas showing increased activation were connected to the anterior putamen. CONCLUSIONS: Despite conflicting results in individual neuroimaging studies, this revised meta-analytic approach identified consistent patterns of abnormal motor-related activation in Parkinson's disease. The distinct patterns of decreased and increased activity might be determined by their connectivity with different subregions of the putamen. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Encéfalo/diagnóstico por imagen , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen
7.
Brain Commun ; 2(2): fcaa147, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33225277

RESUMEN

Levodopa-induced dyskinesia gradually emerges during long-term dopamine therapy, causing major disability in patients with Parkinson disease. Using pharmacodynamic functional MRI, we have previously shown that the intake of levodopa triggers an excessive activation of the pre-supplementary motor area in Parkinson disease patients with peak-of-dose dyskinesia. In this pre-registered, interventional study, we tested whether the abnormal responsiveness of the pre-supplementary motor area to levodopa may constitute a 'stimulation target' for treating dyskinesia. A gender-balanced group of 17 Parkinson disease patients with peak-of-dose dyskinesia received 30 min of robot-assisted repetitive transcranial magnetic stimulation, after they had paused their anti-Parkinson medication. Real-repetitive transcranial magnetic stimulation at 100% or sham-repetitive transcranial magnetic stimulation at 30% of individual resting corticomotor threshold of left first dorsal interosseous muscle was applied on separate days in counterbalanced order. Following repetitive transcranial magnetic stimulation, patients took 200 mg of oral levodopa and underwent functional MRI to map brain activity, while they performed the same go/no-go task as in our previous study. Blinded video assessment revealed that real-repetitive transcranial magnetic stimulation delayed the onset of dyskinesia and reduced its severity relative to sham-repetitive transcranial magnetic stimulation. Individual improvement in dyskinesia severity scaled linearly with the modulatory effect of real-repetitive transcranial magnetic stimulation on task-related activation in the pre-supplementary motor area. Stimulation-induced delay in dyskinesia onset correlated positively with the induced electrical field strength in the pre-supplementary motor area. Our results provide converging evidence that the levodopa-triggered increase in pre-supplementary motor area activity plays a causal role in the pathophysiology of peak-of-dose dyskinesia and constitutes a promising cortical target for brain stimulation therapy.

8.
Neuroimage Clin ; 27: 102330, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32688307

RESUMEN

Dopaminergic treatment may impair the ability to suppress impulsive behaviours in patients with Parkinson's disease, triggering impulse control disorders. It is unclear how dopaminergic medication affects the neural networks that contribute to withholding inappropriate actions. To address this question, we mapped task-related brain activity with whole-brain functional magnetic resonance imaging at 3 Tesla in 26 patients with Parkinson's disease. Patients performed a sequential gambling task while being ON and OFF their regular dopaminergic treatment. During a gambling round, patients repeatedly decided between the option to continue with gambling and accumulate more monetary reward under increasing risk or the option to bank the current balance and start a new round. 13 patients had an impulse control disorder (ICD + group). These patients did not differ in risk-taking attitude during sequential gambling from 13 patients without impulse control disorder (ICD - group), but they displayed differences in gambling-related activity in cortico-subcortical brain areas supporting inhibitory control. First, the ICD + group showed reduced "continue-to-gamble" activity in right inferior frontal gyrus and subthalamic nucleus. Second, the individual risk-attitude scaled positively with "continue-to-gamble" activity in right subthalamic nucleus and striatum in the ICD - group only. Third, ICD + patients differed in their functional neural responses to dopaminergic treatment from ICD - patients: dopaminergic therapy reduced functional connectivity between inferior frontal gyrus and subthalamic nucleus during "continue-to-gamble" decisions and attenuated striatal responses towards accumulating reward and risk. Together, the medication-independent (trait) and medication-related (state) differences in neural activity may set a permissive stage for the emergence of impulse control disorders during dopamine replacement therapy in Parkinson's disease.


Asunto(s)
Trastornos Disruptivos, del Control de Impulso y de la Conducta , Juego de Azar , Enfermedad de Parkinson , Núcleo Subtalámico , Encéfalo/diagnóstico por imagen , Trastornos Disruptivos, del Control de Impulso y de la Conducta/inducido químicamente , Humanos , Enfermedad de Parkinson/tratamiento farmacológico
9.
Brain ; 142(9): 2558-2571, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31327002

RESUMEN

Pathological alterations to the locus coeruleus, the major source of noradrenaline in the brain, are histologically evident in early stages of neurodegenerative diseases. Novel MRI approaches now provide an opportunity to quantify structural features of the locus coeruleus in vivo during disease progression. In combination with neuropathological biomarkers, in vivo locus coeruleus imaging could help to understand the contribution of locus coeruleus neurodegeneration to clinical and pathological manifestations in Alzheimer's disease, atypical neurodegenerative dementias and Parkinson's disease. Moreover, as the functional sensitivity of the noradrenergic system is likely to change with disease progression, in vivo measures of locus coeruleus integrity could provide new pathophysiological insights into cognitive and behavioural symptoms. Locus coeruleus imaging also holds the promise to stratify patients into clinical trials according to noradrenergic dysfunction. In this article, we present a consensus on how non-invasive in vivo assessment of locus coeruleus integrity can be used for clinical research in neurodegenerative diseases. We outline the next steps for in vivo, post-mortem and clinical studies that can lay the groundwork to evaluate the potential of locus coeruleus imaging as a biomarker for neurodegenerative diseases.


Asunto(s)
Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/metabolismo , Imagen por Resonancia Magnética/métodos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/metabolismo , Norepinefrina/metabolismo , Biomarcadores/metabolismo , Humanos
10.
Mov Disord ; 34(3): 366-376, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30485537

RESUMEN

BACKGROUND: STN-DBS effectively treats motor symptoms of advanced PD. Nonmotor cognitive symptoms, such as impaired impulse control or decision making, may either improve or worsen with DBS. A potential mediating factor of DBS-induced modulation of cognition is the electrode position within the STN with regard to functional subareas of parallel motor, cognitive, and affective basal ganglia loops. However, to date, the volume of tissue activated and weighted stimulation of STN motor versus nonmotor territories are yet to be linked to differential DBS effects on cognition. OBJECTIVES: We aim to investigate whether STN-DBS influences risk-reward trade-off decisions and analyze its dependency on electrode placement. METHODS: Seventeen PD patients ON and OFF STN-DBS and 17 age-matched healthy controls conducted a sequential decision-making task with escalating risk and reward. We computed the effect of STN-DBS on risk-reward trade-off decisions, localized patients' bilateral electrodes, and analyzed the predictive value of volume of tissue activated in STN motor and nonmotor territories on behavioral change. RESULTS: We found that STN-DBS not only improves PD motor symptoms, but also normalizes overly risk-averse decision behavior in PD. Intersubject variance in electrode location could explain this behavioral change. Specifically, if STN-DBS activated preferentially STN motor territory, patients' risk-reward trade-off decisions more resembled those of healthy controls. CONCLUSIONS: Our findings support the notion of convergence of different functional circuits within the STN and imply a positive effect of well-placed STN-DBS on nonmotor cognitive functioning in PD. © 2018 International Parkinson and Movement Disorder Society.


Asunto(s)
Toma de Decisiones/fisiología , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Asunción de Riesgos , Núcleo Subtalámico/fisiopatología , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Enfermedad de Parkinson/fisiopatología , Resultado del Tratamiento
11.
Neuroimage ; 190: 79-93, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30465864

RESUMEN

Parkinson's disease causes a characteristic combination of motor symptoms due to progressive neurodegeneration of dopaminergic neurons in the substantia nigra pars compacta. The core impairment of dopaminergic neurotransmission has motivated the use of functional magnetic resonance imaging (fMRI) in patients with Parkinson's disease to elucidate the role of dopamine in motor control and cognition in humans. Here we review the main insights from functional brain imaging in Parkinson's disease. Task-related fMRI revealed many disease-related alterations in brain activation patterns. However, the interpretation of these findings is complicated by the fact that task-dependent activity is influenced by complex interactions between the amount of dopaminergic neurodegeneration in the task-relevant nuclei, the state of medication, genetic factors and performance. Despite these ambiguities, fMRI studies in Parkinson's disease demonstrated a central role of dopamine in the generation of movement vigour (bradykinesia) and the control of excessive movements (dyskinesia), involving changes of both activity and connectivity of the putamen, premotor and motor regions, and right inferior frontal gyrus (rIFG). The fMRI studies addressing cognitive flexibility provided convergent evidence for a non-linear, U-shaped, relationship between dopamine levels and performance. The amount of neurodegeneration in the task-relevant dopaminergic nuclei and pharmacological dopamine replacement can therefore move performance either away or towards the task-specific optimum. Dopamine levels also strongly affect processing of reward and punishment for optimal learning. However, further studies are needed for a detailed understanding of the mechanisms underlying these effects.


Asunto(s)
Disfunción Cognitiva , Dopamina/fisiología , Función Ejecutiva/fisiología , Hipercinesia , Hipocinesia , Neuroimagen , Enfermedad de Parkinson , Recompensa , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Humanos , Hipercinesia/diagnóstico por imagen , Hipercinesia/etiología , Hipercinesia/metabolismo , Hipercinesia/fisiopatología , Hipocinesia/diagnóstico por imagen , Hipocinesia/etiología , Hipocinesia/metabolismo , Hipocinesia/fisiopatología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología
13.
Nat Commun ; 8(1): 1942, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29208968

RESUMEN

Decisions are based on value expectations derived from experience. We show that dorsal anterior cingulate cortex and three other brain regions hold multiple representations of choice value based on different timescales of experience organized in terms of systematic gradients across the cortex. Some parts of each area represent value estimates based on recent reward experience while others represent value estimates based on experience over the longer term. The value estimates within these areas interact with one another according to their temporal scaling. Some aspects of the representations change dynamically as the environment changes. The spectrum of value estimates may act as a flexible selection mechanism for combining experience-derived value information with other aspects of value to allow flexible and adaptive decisions in changing environments.


Asunto(s)
Toma de Decisiones/fisiología , Giro del Cíngulo/fisiología , Lóbulo Parietal/fisiología , Aprendizaje Inverso/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Conducta de Elección/fisiología , Neuroimagen Funcional , Giro del Cíngulo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Lóbulo Parietal/diagnóstico por imagen , Probabilidad
14.
J Abnorm Psychol ; 126(3): 291-300, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28182445

RESUMEN

BACKGROUND: Depressed individuals often exhibit impaired inhibition to negative input and identification of positive stimuli, but it is unclear whether this is a state or trait feature. We here exploited a naturalistic model, namely individuals with seasonal affective disorder (SAD), to study this feature longitudinally. AIM: The goal of this study was to examine seasonal changes in inhibitory control and identification of emotional faces in individuals with SAD. METHOD: Twenty-nine individuals diagnosed with winter-SAD and 30 demographically matched controls with no seasonality symptoms completed an emotional Go/NoGo task, requiring inhibition of prepotent responses to emotional facial expressions and an emotional face identification task twice, in winter and summer. RESULTS: In winter, individuals with SAD showed impaired ability to inhibit responses to angry (p = .0006) and sad faces (p = .011), and decreased identification of happy faces (p = .032) compared with controls. In summer, individuals with SAD and controls performed similarly on these tasks (ps > .24). CONCLUSION: We provide novel evidence that inhibition of angry and sad faces and identification of happy faces are impaired in SAD in the symptomatic phase, but not in the remitted phase. The affective biases in cognitive processing constitute state-dependent features of SAD. Our data show that reinstatement of a normal affective cognition should be possible and would constitute a major goal in psychiatric treatment to improve the quality of life for these patients. (PsycINFO Database Record


Asunto(s)
Emociones , Función Ejecutiva , Reconocimiento Facial , Inhibición Psicológica , Trastorno Afectivo Estacional/psicología , Adulto , Expresión Facial , Femenino , Humanos , Estudios Longitudinales , Masculino , Adulto Joven
15.
J Neurosci ; 36(19): 5417-26, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27170137

RESUMEN

UNLABELLED: When gathering valued goods, risk and reward are often coupled and escalate over time, for instance, during foraging, trading, or gambling. This escalating frame requires agents to continuously balance expectations of reward against those of risk. To address how the human brain dynamically computes these tradeoffs, we performed whole-brain fMRI while healthy young individuals engaged in a sequential gambling task. Participants were repeatedly confronted with the option to continue with throwing a die to accumulate monetary reward under escalating risk, or the alternative option to stop to bank the current balance. Within each gambling round, the accumulation of gains gradually increased reaction times for "continue" choices, indicating growing uncertainty in the decision to continue. Neural activity evoked by "continue" choices was associated with growing activity and connectivity of a cortico-subcortical "braking" network that positively scaled with the accumulated gains, including pre-supplementary motor area (pre-SMA), inferior frontal gyrus, caudate, and subthalamic nucleus (STN). The influence of the STN on continue-evoked activity in the pre-SMA was predicted by interindividual differences in risk-aversion attitudes expressed during the gambling task. Furthermore, activity in dorsal anterior cingulate cortex (ACC) reflected individual choice tendencies by showing increased activation when subjects made nondefault "continue" choices despite an increasing tendency to stop, but ACC activity did not change in proportion with subjective choice uncertainty. Together, the results implicate a key role of dorsal ACC, pre-SMA, inferior frontal gyrus, and STN in computing the trade-off between escalating reward and risk in sequential decision-making. SIGNIFICANCE STATEMENT: Using a paradigm where subjects experienced increasing potential rewards coupled with increasing risk, this study addressed two unresolved questions in the field of decision-making: First, we investigated an "inhibitory" network of regions that has so far been investigated with externally cued action inhibition. In this study, we show that the dynamics in this network under increasingly risky decisions are predictive of subjects' risk attitudes. Second, we contribute to a currently ongoing debate about the anterior cingulate cortex's role in sequential foraging decisions by showing that its activity is related to making nondefault choices rather than to choice uncertainty.


Asunto(s)
Conectoma , Toma de Decisiones , Giro del Cíngulo/fisiología , Recompensa , Asunción de Riesgos , Potenciales Evocados , Femenino , Humanos , Masculino
16.
Neuroimage ; 134: 180-191, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27083529

RESUMEN

Adaptive actions build on internal probabilistic models of possible outcomes that are tuned according to the errors of their predictions when experiencing an actual outcome. Prediction errors (PEs) inform choice behavior across a diversity of outcome domains and dimensions, yet neuroimaging studies have so far only investigated such signals in singular experimental contexts. It is thus unclear whether the neuroanatomical distribution of PE encoding reported previously pertains to computational features that are invariant with respect to outcome valence, sensory domain, or some combination of the two. We acquired functional MRI data while volunteers performed four probabilistic reversal learning tasks which differed in terms of outcome valence (reward-seeking versus punishment-avoidance) and domain (abstract symbols versus facial expressions) of outcomes. We found that ventral striatum and frontopolar cortex coded increasingly positive PEs, whereas dorsal anterior cingulate cortex (dACC) traced increasingly negative PEs, irrespectively of the outcome dimension. Individual reversal behavior was unaffected by context manipulations and was predicted by activity in dACC and right inferior frontal gyrus (IFG). The stronger the response to negative PEs in these areas, the lower was the tendency to reverse choice behavior in response to negative events, suggesting that these regions enforce a rule-based strategy across outcome dimensions. Outcome valence influenced PE-related activity in left amygdala, IFG, and dorsomedial prefrontal cortex, where activity selectively scaled with increasingly positive PEs in the reward-seeking but not punishment-avoidance context, irrespective of sensory domain. Left amygdala displayed an additional influence of sensory domain. In the context of avoiding punishment, amygdala activity increased with increasingly negative PEs, but only for facial stimuli, indicating an integration of outcome valence and sensory domain during probabilistic choices.


Asunto(s)
Corteza Cerebral/fisiología , Conducta de Elección/fisiología , Cognición/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Aprendizaje por Probabilidad , Aprendizaje Inverso/fisiología , Adaptación Fisiológica/fisiología , Adulto , Mapeo Encefálico/métodos , Conectoma/métodos , Humanos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Análisis y Desempeño de Tareas , Adulto Joven
17.
Brain Res Bull ; 116: 34-44, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26033702

RESUMEN

Within one experiment and one T-maze, we examined the consequences of (i) bilateral lesions of the anteromedial prefrontal cortex (PFC), (ii) bilateral transections of the fimbria-fornix (FF), or (iii) combined lesions of both PFC and FF (COMB) on rats' ability to perform reversal or set-shifting. Postoperatively, the animals were trained to perform a spatial discrimination go-right task. This was followed by (1) a spatial reversal go-left task (reversal learning), or (2) a visual pattern discrimination task (set-shift). Neither single (PFC or FF) lesion nor combined (COMB) lesions affected the animals' ability to acquire the original spatial discrimination task. Regarding the reversal learning, the performance of the PFC and the FF groups was not significantly different from that of the sham operated control animals (Sham). In contrast, animals with combined lesion of both structures were impaired on both error rate and acquisition speed relative to all other groups. Regarding the set-shifting, all lesioned groups were impaired relative to the Sham group both regarding the error rate and the acquisition speed. There was, however, no difference in the degree of impairment between the lesioned groups. We conclude that both the PFC and the hippocampus contributed to the mediation of the reversal learning and set-shifting. During functional recovery of reversal learning, these two structures exhibited a mutual dependency, whilst the functional recovery of set-shifting was mediated by a substrate outside these two structures.


Asunto(s)
Discriminación en Psicología/fisiología , Hipocampo/lesiones , Aprendizaje por Laberinto/fisiología , Corteza Prefrontal/lesiones , Recuperación de la Función/fisiología , Aprendizaje Inverso/fisiología , Animales , Modelos Animales de Enfermedad , Función Ejecutiva/fisiología , Hipocampo/fisiopatología , Masculino , Pruebas Neuropsicológicas , Procedimientos Neuroquirúrgicos , Corteza Prefrontal/fisiopatología , Distribución Aleatoria , Ratas Wistar , Conducta Espacial/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...