Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Cell Prolif ; : e13627, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421110

RESUMEN

The central nervous system (CNS) is surrounded by three membranes called meninges. Specialised fibroblasts, originating from the mesoderm and neural crest, primarily populate the meninges and serve as a binding agent. Our goal was to compare fibroblasts from meninges and skin obtained from the same human-aged donors, exploring their molecular and cellular characteristics related to CNS functions. We isolated meningeal fibroblasts (MFs) from brain donors and skin fibroblasts (SFs) from the same subjects. A functional analysis was performed measuring cell appearance, metabolic activity, and cellular orientation. We examined fibronectin, serpin H1, ß-III-tubulin, and nestin through qPCR and immunofluorescence. A whole transcriptome analysis was also performed to characterise the gene expression of MFs and SFs. MFs appeared more rapidly in the post-tissue processing, while SFs showed an elevated cellular metabolism and a well-defined cellular orientation. The four markers were mostly similar between the MFs and SFs, except for nestin, more expressed in MFs. Transcriptome analysis reveals significant differences, particularly in cyclic adenosine monophosphate (cAMP) metabolism and response to forskolin, both of which are upregulated in MFs. This study highlights MFs' unique characteristics, including the timing of appearance, metabolic activity, and gene expression patterns, particularly in cAMP metabolism and response to forskolin. These findings contribute to a deeper understanding of non-neuronal cells' involvement in CNS activities and potentially open avenues for therapeutic exploration.

2.
Nutrients ; 16(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38201980

RESUMEN

(1) Background: Clinical results on the effects of excess sugar consumption on insulin sensitivity are conflicting, possibly due to differences in sugar type and the insulin sensitivity index (ISI) assessed. Therefore, we compared the effects of consuming four different sugars on insulin sensitivity indices derived from oral glucose tolerance tests (OGTT). (2) Methods: Young adults consumed fructose-, glucose-, high-fructose corn syrup (HFCS)-, sucrose-, or aspartame-sweetened beverages (SB) for 2 weeks. Participants underwent OGTT before and at the end of the intervention. Fasting glucose and insulin, Homeostatic Model Assessment-Insulin Resistance (HOMA-IR), glucose and insulin area under the curve, Surrogate Hepatic Insulin Resistance Index, Matsuda ISI, Predicted M ISI, and Stumvoll Index were assessed. Outcomes were analyzed to determine: (1) effects of the five SB; (2) effects of the proportions of fructose and glucose in all SB. (3) Results: Fructose-SB and the fructose component in mixed sugars negatively affected outcomes that assess hepatic insulin sensitivity, while glucose did not. The effects of glucose-SB and the glucose component in mixed sugar on muscle insulin sensitivity were more negative than those of fructose. (4) Conclusion: the effects of consuming sugar-SB on insulin sensitivity varied depending on type of sugar and ISI index because outcomes assessing hepatic insulin sensitivity were negatively affected by fructose, and outcomes assessing muscle insulin sensitivity were more negatively affected by glucose.


Asunto(s)
Jarabe de Maíz Alto en Fructosa , Resistencia a la Insulina , Adulto Joven , Humanos , Glucosa , Prueba de Tolerancia a la Glucosa , Aspartame/farmacología , Zea mays , Sacarosa/farmacología , Fructosa/efectos adversos , Jarabe de Maíz Alto en Fructosa/efectos adversos , Bebidas , Insulina
3.
Artículo en Inglés | MEDLINE | ID: mdl-38072238

RESUMEN

Hepatic inflammation is commonly identified in Wilson disease (WD), a genetic disease of hepatic and brain copper accumulation. Copper accumulation is associated with increased oxidative stress and reactive oxygen species generation which may result in non-enzymatic oxidation of membrane-bound polyunsaturated fatty acids (PUFA). PUFA can be oxidized enzymatically via lipoxygenases (LOX), cyclooxygenases (COX), and cytochrome P450 monooxygenases (CYP). Products of PUFA oxidation are collectively known as oxylipins (OXL) and are bioactive lipids that modulate hepatic inflammation. We examined hepatic OXL profiles at early stages of WD in two mouse models, the toxic milk mouse from The Jackson Laboratory (tx-j) and the Atp7b knockout on a C57Bl/6 background (Atp7b-/-B6). Targeted lipidomic analysis performed by ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry showed that in both tx-j and Atp7b-/-B6 mice, hepatic OXL profiles were altered with higher thromboxane and prostaglandins levels. The levels of oxidative stress marker, 9-HETE were increased more markedly in tx-j mice. However, both genotypes showed upregulated transcript levels of many genes related to oxidative stress and inflammation. Both genotypes showed higher prostaglandins, thromboxin along with higher PUFA-derived alcohols, diols, and ketones with altered epoxides; the expression of Alox5 was upregulated and many CYP-related genes were dysregulated. Pathway analyses show dysregulation in arachidonic acid and linoleic acid metabolism characterizes mice with WD. Our findings indicate alterations in hepatic PUFA metabolism in early-stage WD and suggest the upregulation of both, non-enzymatic ROS-dependent and enzymatic PUFA oxidation, which could have implications for hepatic manifestations in WD and represent potential targets for future therapies.


Asunto(s)
Degeneración Hepatolenticular , Ratones , Animales , Degeneración Hepatolenticular/genética , Degeneración Hepatolenticular/metabolismo , Oxilipinas , Cobre/metabolismo , Ácidos Grasos Insaturados , Inflamación , Prostaglandinas
4.
Cells ; 12(24)2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38132144

RESUMEN

The greatest risk factor for neurodegeneration is the aging of the multiple cell types of human CNS, among which microglia are important because they are the "sentinels" of internal and external perturbations and have long lifespans. We aim to emphasize microglial signatures in physiologic brain aging and Alzheimer's disease (AD). A systematic literature search of all published articles about microglial senescence in human healthy aging and AD was performed, searching for PubMed and Scopus online databases. Among 1947 articles screened, a total of 289 articles were assessed for full-text eligibility. Microglial transcriptomic, phenotypic, and neuropathological profiles were analyzed comprising healthy aging and AD. Our review highlights that studies on animal models only partially clarify what happens in humans. Human and mice microglia are hugely heterogeneous. Like a two-sided coin, microglia can be protective or harmful, depending on the context. Brain health depends upon a balance between the actions and reactions of microglia maintaining brain homeostasis in cooperation with other cell types (especially astrocytes and oligodendrocytes). During aging, accumulating oxidative stress and mitochondrial dysfunction weaken microglia leading to dystrophic/senescent, otherwise over-reactive, phenotype-enhancing neurodegenerative phenomena. Microglia are crucial for managing Aß, pTAU, and damaged synapses, being pivotal in AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Envejecimiento Saludable , Humanos , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Envejecimiento/metabolismo , Encéfalo/metabolismo
5.
Hepatol Commun ; 7(10)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37695076

RESUMEN

BACKGROUND: The clinical manifestations of Wilson disease (WD) are related to copper accumulation in the liver and the brain, but little is known about other tissue involvement regarding metabolic changes in WD. In vitro studies suggested that the loss of intestinal ATP7B affects metabolic dysregulation in WD. We tested this hypothesis by evaluating the gut microbiota and lipidome in 2 mouse models of WD and by characterizing a new mouse model with a targeted deletion of Atp7b in the intestine. METHODS: Cecal content 16S sequencing and untargeted hepatic and plasma lipidome analyses in the Jackson Laboratory toxic-milk and the Atp7b null global knockout mouse models of WD were profiled and integrated. Intestine-specific Atp7b knockout mice (Atp7bΔIEC) were generated and characterized using targeted lipidome analysis following a high-fat diet challenge. RESULTS: Gut microbiota diversity was reduced in animal models of WD. Comparative prediction analysis revealed amino acid, carbohydrate, and lipid metabolism functions to be dysregulated in the WD gut microbial metagenome. Liver and plasma lipidomic profiles showed dysregulated triglyceride and diglyceride, phospholipid, and sphingolipid metabolism in WD models. However, Atp7bΔIEC mice did not show gut microbiome differences compared to wild type. When challenged with a high-fat diet, Atp7bΔIEC mice exhibited profound alterations to fatty acid desaturation and sphingolipid metabolism pathways as well as altered APOB48 distribution in intestinal epithelial cells. CONCLUSIONS: Gut microbiome and lipidome underlie systemic metabolic manifestations in murine WD. Intestine-specific ATP7B deficiency affected both intestinal and systemic response to a high-fat challenge but not the microbiome profile, at least at early stages. WD is a systemic disease in which intestinal-specific ATP7B loss and diet influence the phenotype and the lipidome profile.


Asunto(s)
Degeneración Hepatolenticular , Animales , Ratones , Degeneración Hepatolenticular/genética , Metabolismo de los Lípidos/genética , Modelos Animales de Enfermedad , Esfingolípidos , Intestinos
6.
Food Funct ; 14(18): 8217-8228, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37615673

RESUMEN

Flavan-3-ols are bioactive compounds found in a variety of fruits and vegetables (F&V) that have been linked to positive health benefits. Increasing habitual flavan-3-ol intake is challenged by the generally low consumption of F&V. While smoothies are a commonly endorsed, consumer-accepted means to increase the daily intake of these important foods, fruits used for smoothie preparation can have a high polyphenol oxidase (PPO) activity and thus potentially affect the content and bioavailability of flavan-3-ols. To assess whether or not consuming freshly prepared smoothies made with different PPO-containing fruit impacts the bioavailability of the flavan-3-ols, a controlled, single blinded and cross-over study was conducted in healthy men (n = 8) who consumed a flavan-3-ol-containing banana-based smoothie (high-PPO drink), a flavan-3-ol-containing mixed berry smoothie (low-PPO drink) and flavan-3-ols in a capsule format (control). The peak plasma concentration (Cmax) of flavan-3-ol metabolites after capsule intake was 680 ± 78 nmol L-1, which was similar to the levels detected after the intake of the low PPO drink. In contrast, the intake of the high PPO drink resulted in a Cmax of 96 ± 47 nmol L-1, 84% lower than that obtained after capsule intake. In a subsequent study (n = 11), flavan-3-ols were co-ingested with a high-PPO banana drink but contact prior to intake was prevented. In this context, plasma flavan-3-ol levels were still reduced, suggesting an effect possibly related to post-ingestion PPO activity degrading flavan-3-ols in the stomach. There was a substantial range in the PPO activity detected in 18 different fruits, vegetables and plant-derived dietary products. In conclusion, bioavailability of flavan-3-ols, and most likely other dietary polyphenol bioactives, can be reduced substantially by the co-ingestion of high PPO-containing products, the implications of which are of importance for dietary advice and food preparation both at home and in industrial settings.


Asunto(s)
Frutas , Magnoliopsida , Masculino , Humanos , Disponibilidad Biológica , Estudios Cruzados , Catecol Oxidasa , Estado de Salud
7.
Hepatol Commun ; 7(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37184530

RESUMEN

Wilson disease (WD) is caused by autosomal variants affecting the ATP7B gene on chromosome 13, resulting in alterations in physiological copper homeostasis and copper accumulation. Excess copper clinically manifests in many organs, most often in the central nervous system and liver, ultimately causing cirrhosis and death. Often considered a pediatric or young adult disease, WD actually affects patients of all ages, and aging patients need to be regularly managed with long-term follow-up. Despite over a century of advances in diagnosis and treatment, WD is still associated with diagnostic challenges and considerable disability and death, in part due to delays in diagnosis and limitations in treatment. Standard-of-care treatments are considered generally effective when the diagnosis is timely but are also limited by efficacy, safety concerns, multiple daily dosing, and adherence. This expert perspective review seeks to facilitate improvements in the awareness, understanding, diagnosis, and management of WD. The objectives are to provide a full overview of WD and streamline updated diagnosis and treatment guidance, as recently published by the American Association for the Study of Liver Diseases, in a practical way for clinical use.


Asunto(s)
Degeneración Hepatolenticular , Humanos , Niño , Degeneración Hepatolenticular/diagnóstico , Degeneración Hepatolenticular/genética , Degeneración Hepatolenticular/terapia , Cobre , Cirrosis Hepática , Homeostasis
8.
Biomedicines ; 11(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36830958

RESUMEN

Wilson disease (WD) is a rare, inherited metabolic disorder manifested with varying clinical presentations including hepatic, neurological, psychiatric, and ophthalmological features, often in combination. Causative mutations in the ATP7B gene result in copper accumulation in hepatocytes and/or neurons, but clinical diagnosis remains challenging. Diagnosis is complicated by mild, non-specific presentations, mutations exerting no clear effect on protein function, and inconclusive laboratory tests, particularly regarding serum ceruloplasmin levels. As early diagnosis and effective treatment are crucial to prevent progressive damage, we report here on the establishment of a global collaboration of researchers, clinicians, and patient advocacy groups to identify and address the outstanding challenges posed by WD.

9.
Free Radic Biol Med ; 196: 1-8, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36621554

RESUMEN

Flavan-3-ols, including the flavan-3-ol monomer (-)-epicatechin, are dietary bioactives known to mediate beneficial cardiovascular effects in humans. Recent studies showed that flavan-3-ols could interact with methylxanthines, evidenced by an increase in flavan-3-ol bioavailability with a concomitant increase in flavan-3-ol intake-mediated vascular effects. This study aimed at elucidating flavan-3-ol-methylxanthine interactions in humans in vivo by evaluating the specific contributions of theobromine and caffeine on flavan-3-ol bioavailability. In ileostomists, the effect of methylxanthines on the efflux of flavan-3-ol metabolites in the small intestine was assessed, a parameter important to an understanding of the pharmacokinetics of flavan-3-ols in humans. In a randomized, controlled, triple cross-over study in volunteers with a functional colon (n = 10), co-ingestion of flavan-3-ols and cocoa methylxanthines, mainly represented by theobromine, increased peak circulatory levels (Cmax) of flavan-3-ols metabolites (+21 ± 8%; p < 0.05). Conversely, caffeine did not mediate a statistically significant effect on flavan-3-ol bioavailability (Cmax = +10 ± 8%, p = n.s.). In a subsequent randomized, controlled, double cross-over study in ileostomists (n = 10), cocoa methylxanthines did not affect circulatory levels of flavan-3-ol metabolites, suggesting potential differences in flavan-3-ol bioavailability compared to volunteers with a functional colon. The main metabolite in ileal fluid was (-)-epicatechin-3'-sulfate, however, no differences in flavan-3-ol metabolites in ileal fluid were observed after flavan-3-ol intake with and without cocoa methylxanthines. Taken together, these results demonstrate a differential effect of caffeine and theobromine in modulating flavan-3-ol bioavailability when these bioactives are co-ingested. These findings should be considered when comparing the effects mediated by the intake of flavan-3-ol-containing foods and beverages and the amount and type of methylxanthines present in the ingested matrixes. Ultimately, these insights will be of value to further optimize current dietary recommendations for flavan-3-ol intake. CLINICAL TRIAL REGISTRATION NUMBER: This work was registered at clinicaltrials.gov as NCT03526107 (study part 1, volunteers with functional colon) and NCT03765606 (study part 2, volunteers with an ileostomy).


Asunto(s)
Cacao , Catequina , Humanos , Cafeína/metabolismo , Teobromina/metabolismo , Ileostomía , Disponibilidad Biológica , Estudios Cruzados , Flavonoides/metabolismo , Voluntarios , Colon/metabolismo
10.
Nutrients ; 15(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36678280

RESUMEN

Background and Aim: Collecting accurate dietary information in the research setting is challenging due to the inherent biases, duration, and resource-intensive nature of traditional data collection methods. Diet ID™ is a novel, rapid assessment method that uses an image-based algorithm to identify dietary patterns and estimate nutrient intake. The purpose of this analysis was to explore the criterion validity between Diet ID™ and additional measures of dietary intake. Methods: This prospective cohort study (n = 42) collected dietary information using Diet ID™, the Nutrition Data System for Research (NDSR), plasma carotenoid concentrations, and the Veggie Meter® to estimate carotenoid levels in the skin. Results: There were significant correlations between Diet ID™ and NDSR for diet quality, calories, carbohydrates, protein, fiber, and cholesterol. Vitamin A and carotenoid intake were significantly correlated, with the exception of α-carotene and lycopene. Significant correlations were observed for calcium, folate, iron, sodium, potassium, Vitamins B2, B3, B6, C, and E. Skin carotenoid scores and plasma carotenoids were correlated with carotenoid intake from Diet ID™. Conclusions: Diet ID™ may be a useful tool in nutrition research as a less time-intensive and minimally burdensome dietary data collection method for both participants and researchers.


Asunto(s)
Carotenoides , Dieta , Humanos , Estudios Prospectivos , Universidades , Ingestión de Alimentos , Estudiantes
11.
bioRxiv ; 2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36711483

RESUMEN

Background and aims: Major clinical manifestations of Wilson disease (WD) are related to copper accumulation in the liver and the brain, and little is known about other tissues involvement in metabolic changes in WD. In vitro studies suggested that the loss of intestinal ATP7B could contribute to metabolic dysregulation in WD. We tested this hypothesis by evaluating gut microbiota and lipidome in two mouse models of WD and by characterizing a new mouse model with a targeted deletion of Atp7b in intestine. Methods: Cecal content 16S sequencing and untargeted hepatic and plasma lipidome analyses in the Jackson Laboratory toxic-milk and the Atp7b null global knockout mouse models of WD were profiled and integrated. Intestine-specific Atp7b knockout mice ( Atp7b ΔIEC ) was generated using B6.Cg-Tg(Vil1-cre)997Gum/J mice and Atp7b Lox/Lox mice, and characterized using targeted lipidome analysis following a high-fat diet challenge. Results: Gut microbiota diversity was reduced in animal models of WD. Comparative prediction analysis revealed amino acid, carbohydrate, and lipid metabolism functions to be dysregulated in the WD gut microbial metagenome. Liver and plasma lipidomic profiles showed dysregulated tri- and diglyceride, phospholipid, and sphingolipid metabolism in WD models. When challenged with a high-fat diet, Atp7b ΔIEC mice exhibited profound alterations to fatty acid desaturation and sphingolipid metabolism pathways as well as altered APOB48 distribution in intestinal epithelial cells. Conclusion: Coordinated changes of gut microbiome and lipidome analyses underlie systemic metabolic manifestations in murine WD. Intestine-specific ATP7B deficiency affected both intestinal and systemic response to a high-fat challenge. WD is a systemic disease in which intestinal-specific ATP7B loss and diet influence phenotypic presentations.

13.
Cells ; 11(19)2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36231087

RESUMEN

Here, we aim to describe COVID-19 pathology across different tissues to clarify the disease's pathophysiology. Lungs, kidneys, hearts, and brains from nine COVID-19 autopsies were compared by using antibodies against SARS-CoV-2, macrophages-microglia, T-lymphocytes, B-lymphocytes, and activated platelets. Alzheimer's Disease pathology was also assessed. PCR techniques were used to verify the presence of viral RNA. COVID-19 cases had a short clinical course (0-32 days) and their mean age was 77.4 y/o. Hypoxic changes and inflammatory infiltrates were present across all tissues. The lymphocytic component in the lungs and kidneys was predominant over that of other tissues (p < 0.001), with a significantly greater presence of T-lymphocytes in the lungs (p = 0.020), which showed the greatest presence of viral antigens. The heart showed scant SARS-CoV-2 traces in the endothelium-endocardium, foci of activated macrophages, and rare lymphocytes. The brain showed scarce SARS-CoV-2 traces, prominent microglial activation, and rare lymphocytes. The pons exhibited the highest microglial activation (p = 0.017). Microthrombosis was significantly higher in COVID-19 lungs (p = 0.023) compared with controls. The most characteristic pathological features of COVID-19 were an abundance of T-lymphocytes and microthrombosis in the lung and relevant microglial hyperactivation in the brainstem. This study suggests that the long-term sequelae of COVID-19 derive from persistent inflammation, rather than persistent viral replication.


Asunto(s)
COVID-19 , Trombosis , Anciano , Antígenos Virales , Encéfalo/patología , Humanos , Riñón , Pulmón/patología , Macrófagos , ARN Viral , SARS-CoV-2 , Linfocitos T , Trombosis/patología
15.
Metallomics ; 14(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35929804

RESUMEN

Copper is essential in a host of biological processes, and disruption of its homeostasis is associated with diseases including neurodegeneration and metabolic disorders. Extracellular copper shifts in its speciation between healthy and disease states, and identifying molecular components involved in these perturbations could widen the panel of biomarkers for copper status. While there have been exciting advances in approaches for studying the extracellular proteome with mass spectrometry-based methods, the typical workflows disrupt metal-protein interactions due to the lability of these bonds either during sample preparation or in gas-phase environments. We sought to develop and apply a workflow to enrich for and identify protein populations with copper-binding propensities in extracellular fluids using an immobilized metal affinity chromatography (IMAC) resin. The strategy was optimized using human serum to allow for maximum quantity and diversity of protein enrichment. Protein populations could be differentiated based on protein load on the resin, likely on account of differences in abundance and affinity. The enrichment workflow was applied to plasma samples from patients with Wilson's disease and protein IDs and differential abundancies relative to healthy subjects were compared to those yielded from a traditional proteomic workflow. While the IMAC workflow preserved differential abundance and protein ID information from the traditional workflow, it identified several additional proteins being differentially abundant including those involved in lipid metabolism, immune system, and antioxidant pathways. Our results suggest the potential for this IMAC workflow to identify new proteins as potential biomarkers in copper-associated disease states.


Asunto(s)
Cobre , Proteómica , Cromatografía de Afinidad/métodos , Cobre/metabolismo , Humanos , Espectrometría de Masas , Proteoma/análisis , Proteómica/métodos
16.
Biomedicines ; 10(7)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35884993

RESUMEN

Alzheimer's disease (AD) and Lewy body dementia (LBD) are two different forms of dementia, but their pathology may involve the same cortical areas with overlapping cognitive manifestations. Nonetheless, the clinical phenotype is different due to the topography of the lesions driven by the different underlying molecular processes that arise apart from genetics, causing diverse neurodegeneration. Here, we define the commonalities and differences in the pathological processes of dementia in two kindred cases, a mother and a son, who developed classical AD and an aggressive form of AD/LBD, respectively, through a neuropathological, genetic (next-generation sequencing), and transcriptomic (RNA-seq) comparison of four different brain areas. A genetic analysis did not reveal any pathogenic variants in the principal AD/LBD-causative genes. RNA sequencing highlighted high transcriptional dysregulation within the substantia nigra in the AD/LBD case, while the AD case showed lower transcriptional dysregulation, with the parietal lobe being the most involved brain area. The hippocampus (the most degenerated area) and basal ganglia (lacking specific lesions) expressed the lowest level of dysregulation. Our data suggest that there is a link between transcriptional dysregulation and the amount of tissue damage accumulated across time, assessed through neuropathology. Moreover, we highlight that the molecular bases of AD and LBD follow very different pathways, which underlie their neuropathological signatures. Indeed, the transcriptome profiling through RNA sequencing may be an important tool in flanking the neuropathological analysis for a deeper understanding of AD and LBD pathogenesis.

17.
Chem Sci ; 13(19): 5774, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35694340

RESUMEN

[This corrects the article DOI: 10.1039/D1SC07177G.].

19.
Front Cell Neurosci ; 16: 858347, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573835

RESUMEN

As microtubule-organizing centers (MTOCs), centrosomes play a pivotal role in cell division, neurodevelopment and neuronal maturation. Among centrosomal proteins, centrin-2 (CETN2) also contributes to DNA repair mechanisms which are fundamental to prevent genomic instability during neural stem cell pool expansion. Nevertheless, the expression profile of CETN2 in human neural stem cells and their progeny is currently unknown. To address this question, we interrogated a platform of human neuroepithelial stem (NES) cells derived from post mortem developing brain or established from pluripotent cells and demonstrated that while CETN2 retains its centrosomal location in proliferating NES cells, its expression pattern changes upon differentiation. In particular, we found that CETN2 is selectively expressed in mature astrocytes with a broad cytoplasmic distribution. We then extended our findings on human autoptic nervous tissue samples. We investigated CETN2 distribution in diverse anatomical areas along the rostro-caudal neuraxis and pointed out a peculiar topography of CETN2-labeled astrocytes in humans which was not appreciable in murine tissues, where CETN2 was mostly confined to ependymal cells. As a prototypical condition with glial overproliferation, we also explored CETN2 expression in glioblastoma multiforme (GBM), reporting a focal concentration of CETN2 in neoplastic astrocytes. This study expands CETN2 localization beyond centrosomes and reveals a unique expression pattern that makes it eligible as a novel astrocytic molecular marker, thus opening new roads to glial biology and human neural conditions.

20.
Chem Sci ; 13(15): 4352-4363, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35509459

RESUMEN

Copper is an essential redox-active metal that plays integral roles in biology ranging from enzymatic catalysis to mitochondrial respiration. However, if not adequately regulated, this redox activity has the potential to cause oxidative stress through the production of reactive oxygen species. Indeed, the dysregulation of copper has been associated with a variety of disease states including diabetes, neurodegenerative disorders, and multiple cancers. While increasing tools are being developed for illuminating labile intracellular copper pools and the trafficking pathways in which they are involved, significantly less attention has been given to the analogous extracellular labile pool. To address this gap, we have developed a bioluminescence-based imaging probe, picolinic ester caged-diphenylterazine (pic-DTZ) for monitoring labile, extracellular copper using a coelenterazine-like imidazopyrazinone and the genetically-engineered, marine-based luciferase, nanoluciferase. Unlike the more commonly-used firefly luciferase, nanoluciferase does not require ATP, allowing its application to the extracellular milieu. pic-DTZ demonstrates high metal and oxidation state selectivity for Cu(ii) in aqueous buffer as well as selectivity for labile pools over coordinatively inaccessible protein-bound Cu(ii). We demonstrate the potential of pic-DTZ as a diagnostic tool in human serum and plasma for copper-associated diseases. Additionally, we apply pic-DTZ to lend insight into the extracellular copper dynamic in anticancer treatments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...