Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Leukoc Biol ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39241110

RESUMEN

Neutrophils interact with Leishmania when the sandfly vector inoculates these parasites in the host with saliva and promastigotes-derived extracellular vesicles (EVs). It has been shown that this co-injection induces inflammation and exacerbates leishmaniasis lesions. EVs are a heterogeneous group of vesicles released by cells that play a crucial role in intercellular communication. Neutrophils are among the first cells to interact with the parasites and release neutrophil extracellular traps (NETs) that ensnare and kill the promastigotes. Here, we show that Leishmania amazonensis EVs induce NET formation and identify molecular mechanisms involved. We showed the requirement of neutrophils' Toll-like receptors (TLRs) for EVs-induced NET. EVs carrying the virulence factors lipophosphoglycan (LPG) and the zinc metalloproteases were endocytosed by some neutrophils and snared by NETs. EVs-induced NET formation required reactive oxygen species, myeloperoxidase, elastase, peptidyl arginine deiminase (PAD), and Ca++. The proteomic analysis of the EVs cargo revealed 1,189 proteins; the 100 most abundant identified comprised some known Leishmania virulent factors. Importantly, L. amazonensis EVs-induced NETs lead to the killing of promastigotes and could participate in the exacerbated inflammatory response induced by the EVs, which may play a role in the pathogenesis process.

2.
Pathogens ; 13(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38392842

RESUMEN

Protein synthesis has been a very rich target for developing drugs to control prokaryotic and eukaryotic pathogens. Despite the development of new drug formulations, treating human cutaneous and visceral Leishmaniasis still needs significant improvements due to the considerable side effects and low adherence associated with the current treatment regimen. In this work, we show that the di-substituted urea-derived compounds I-17 and 3m are effective in inhibiting the promastigote growth of different Leishmania species and reducing the macrophage intracellular load of amastigotes of the Leishmania (L.) amazonensis and L. major species, in addition to exhibiting low macrophage cytotoxicity. We also show a potential immunomodulatory effect of I-17 and 3m in infected macrophages, which exhibited increased expression of inducible Nitric Oxide Synthase (NOS2) and production of Nitric Oxide (NO). Our data indicate that I-17, 3m, and their analogs may be helpful in developing new drugs for treating leishmaniasis.

3.
FASEB J ; 30(4): 1557-65, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26678450

RESUMEN

Endoplasmic reticulum (ER) stress triggers the integrated ER-stress response (IERSR) that ensures cellular survival of ER stress and represents a primordial form of innate immunity. We investigated the role of IERSR duringLeishmania amazonensisinfection. Treatment of RAW 264.7 infected macrophages with the ER stress-inducing agent thapsigargin (TG; 1 µM) increasedL. amazonensisinfectivity in an IFN1-α receptor (IFNAR)-dependent manner. In Western blot assays, we showed thatL. amazonensisactivates the inositol-requiring enzyme (IRE1)/ X-box binding protein (XBP)-1-splicing arms of the IERSR in host cells. In chromatin immunoprecipitation (ChIP) assays, we showed an increased occupancy of enhancer and promoter sequences for theIfnbgene by XBP1 in infected RAW 264.7 cells. Knocking down XBP1 expression by transducing RAW 264.7 cells with the short hairpin XBP1 lentiviral vector significantly reduced the parasite proliferation associated with impaired translocation of phosphorylated IFN regulatory transcription factor (IRF)-3 to the nucleus and a decrease in IFN1-ß expression. Knocking down XBP1 expression also increased NO concentration, as determined by Griess reaction and reduced the expression of antioxidant genes, such as heme oxygenase (HO)-1, that protect parasites from oxidative stress. We conclude thatL. amazonensisactivation of XBP1 plays a critical role in infection by protecting the parasites from oxidative stress and increasing IFN1-ß expression.-Dias-Teixeira, K. L., Calegari-Silva, T. C., Dos Santos, G. R. R. M., Vitorino dos Santos, J., Lima, C., Medina, J. M., Aktas, B. H., Lopes, U. G. The integrated endoplasmic reticulum stress response inLeishmania amazonensismacrophage infection: the role of X-box binding protein 1 transcription factor.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico , Leishmania/fisiología , Macrófagos/metabolismo , Macrófagos/microbiología , Factores de Transcripción/metabolismo , Animales , Western Blotting , Línea Celular , Proteínas de Unión al ADN/genética , Expresión Génica , Células HEK293 , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Interacciones Huésped-Parásitos , Humanos , Interferón beta/genética , Interferón beta/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Regiones Promotoras Genéticas/genética , Unión Proteica , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción del Factor Regulador X , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tapsigargina/farmacología , Factores de Transcripción/genética , Proteína 1 de Unión a la X-Box
4.
Mem Inst Oswaldo Cruz ; 110(1): 48-55, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25742263

RESUMEN

Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L.), which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabilisation of membranes, but instead provokes morphological changes, including vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of labelled neutral lipids (BODYPY-palmitic), a notable decrease in the amount of C24-alkylated sterols and an increase in zymosterol content. These results are consistent with the inhibition of 24-sterol methyltransferase (SMT), which is an important enzyme that is responsible for the methylation of sterols at the 24 position. We propose that the main target of tomatidine is the sterols biosynthetic pathway, specifically, inhibition of the 24-SMT. Altogether, the results obtained in the present paper suggest a more general effect of alkaloids in trypanosomatids, which opens potential therapeutic possibilities for the treatment of the diseases caused by these pathogens.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Inhibidores de Crecimiento/farmacología , Tomatina/análogos & derivados , Tomatina/farmacología , Trypanosomatina/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Colesterol/análisis , Solanum lycopersicum/parasitología , Metiltransferasas/efectos de los fármacos , Microscopía Electrónica de Transmisión , Enfermedades de las Plantas/parasitología , Esteroles/análisis , Esteroles/biosíntesis , Trypanosomatina/metabolismo , Trypanosomatina/ultraestructura
5.
Mem. Inst. Oswaldo Cruz ; 110(1): 48-55, 03/02/2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-741623

RESUMEN

Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L.), which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabilisation of membranes, but instead provokes morphological changes, including vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of labelled neutral lipids (BODYPY-palmitic), a notable decrease in the amount of C24-alkylated sterols and an increase in zymosterol content. These results are consistent with the inhibition of 24-sterol methyltransferase (SMT), which is an important enzyme that is responsible for the methylation of sterols at the 24 position. We propose that the main target of tomatidine is the sterols biosynthetic pathway, specifically, inhibition of the 24-SMT. Altogether, the results obtained in the present paper suggest a more general effect of alkaloids in trypanosomatids, which opens potential therapeutic possibilities for the treatment of the diseases caused by these pathogens.


Asunto(s)
Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Cateterismo/métodos , Obstrucción Intestinal/patología , Obstrucción Intestinal/terapia , Intestino Delgado/patología , Biopsia , Constricción Patológica , Endoscopía del Sistema Digestivo , Resultado del Tratamiento
6.
Ann Hematol ; 93(5): 753-60, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24218190

RESUMEN

An investigation into the effects of irradiation and of the storage time on aging and quality are a relevant issue to ensure the safety and the efficiency of irradiation in the prevention of transfusion-associated graft-versus-host disease (TA-GVHD). In this work, the biochemical properties and alterations presented by erythrocyte membranes, up to 28-days post-irradiation, with a dose of 25 Gy, were studied as a function of storage and post-irradiation time. There was a considerable variation in the total of phospholipid content, when comparing the control and irradiated samples, mostly from the third day onwards; and at the same time, the effect occurred as a function on the storage time of blood bags. The levels of total cholesterol decreased 3-9 days after irradiation. TBARS levels were increased after irradiation and 7 days of storage, but no increment of catalase activity was observed after the irradiation. Furthermore, the protein profile was maintained throughout the irradiation and storage time, until the 21st day, with the presence of a protein fragmentation band of around 28 kDa on the 28th day. In conclusion, although gamma irradiation is the main agent for the prevention of TA-GVHD, a better understanding of the physical and biochemical properties of erythrocytes are necessary to better assess their viability, and to be able to issue more secure recommendations on the shelf life of blood bags, and the safe use of the irradiated red cells therein.


Asunto(s)
Conservación de la Sangre , Colesterol/química , Eritrocitos/efectos de la radiación , Rayos gamma , Fosfolípidos/química , Catalasa/metabolismo , Relación Dosis-Respuesta en la Radiación , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/efectos de la radiación , Eritrocitos/química , Eritrocitos/metabolismo , Peroxidación de Lípido/efectos de la radiación , Lípidos de la Membrana/química , Oxidación-Reducción , Proteolisis , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA