Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 150, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326752

RESUMEN

BACKGROUND: The common house spider Parasteatoda tepidariorum represents an emerging new model organism of arthropod evolutionary and developmental (EvoDevo) studies. Recent technical advances have resulted in the first single-cell sequencing (SCS) data on this species allowing deeper insights to be gained into its early development, but mid-to-late stage embryos were not included in these pioneering studies. RESULTS: Therefore, we performed SCS on mid-to-late stage embryos of Parasteatoda and characterized resulting cell clusters by means of in-silico analysis (comparison of key markers of each cluster with previously published information on these genes). In-silico prediction of the nature of each cluster was then tested/verified by means of additional in-situ hybridization experiments with additional markers of each cluster. CONCLUSIONS: Our data show that SCS data reliably group cells with similar genetic fingerprints into more or less distinct clusters, and thus allows identification of developing cell types on a broader level, such as the distinction of ectodermal, mesodermal and endodermal cell lineages, as well as the identification of distinct developing tissues such as subtypes of nervous tissue cells, the developing heart, or the ventral sulcus (VS). In comparison with recent other SCS studies on the same species, our data represent later developmental stages, and thus provide insights into different stages of developing cell types and tissues such as differentiating neurons and the VS that are only present at these later stages.


Asunto(s)
Arañas , Animales , Arañas/genética , Arañas/metabolismo , Evolución Biológica , Mesodermo , Células Germinativas , Análisis de Secuencia de ARN
2.
Cell Biosci ; 13(1): 70, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013648

RESUMEN

BACKGROUND: Slit and Robo are evolutionarily conserved ligand and receptor proteins, respectively, but the number of slit and robo gene paralogs varies across recent bilaterian genomes. Previous studies indicate that this ligand-receptor complex is involved in axon guidance. Given the lack of data regarding Slit/Robo in the Lophotrochozoa compared to Ecdysozoa and Deuterostomia, the present study aims to identify and characterize the expression of Slit/Robo orthologs in leech development. RESULTS: We identified one slit (Hau-slit), and two robo genes (Hau-robo1 and Hau-robo2), and characterized their expression spatiotemporally during the development of the glossiphoniid leech Helobdella austinensis. Throughout segmentation and organogenesis, Hau-slit and Hau-robo1 are broadly expressed in complex and roughly complementary patterns in the ventral and dorsal midline, nerve ganglia, foregut, visceral mesoderm and/or endoderm of the crop, rectum and reproductive organs. Before yolk exhaustion, Hau-robo1 is also expressed where the pigmented eye spots will later develop, and Hau-slit is expressed in the area between these future eye spots. In contrast, Hau-robo2 expression is extremely limited, appearing first in the developing pigmented eye spots, and later in the three additional pairs of cryptic eye spots in head region that never develop pigment. Comparing the expression of robo orthologs between H. austinensis and another glossiphoniid leech, Alboglossiphonia lata allows to that robo1 and robo2 operate combinatorially to differentially specify pigmented and cryptic eyespots within the glossiphoniid leeches. CONCLUSIONS: Our results support a conserved role in neurogenesis, midline formation and eye spot development for Slit/Robo in the Lophotrochozoa, and provide relevant data for evo-devo studies related to nervous system evolution.

3.
Evodevo ; 12(1): 7, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078450

RESUMEN

BACKGROUND: In the vinegar fly Drosophila melanogaster, the homeodomain containing transcription factor Teashirt (Tsh) appears to specify trunk identity in concert with the function of the Hox genes. While in Drosophila there is a second gene closely related to tsh, called tiptop (tio), in other arthropods species only one copy exists (called tio/tsh). The expression of tsh and tio/tsh, respectively, is surprisingly similar among arthropods suggesting that its function as trunk selector gene may be conserved. Other research, for example on the beetle Tribolium castaneum, questions even conservation of Tsh function among insects. The zinc-finger transcription factor Spalt (Sal) is involved in the regulation of Drosophila tsh, but this regulatory interaction does not appear to be conserved in Tribolium either. Whether the function and interaction of tsh and sal as potential trunk-specifiers, however, is conserved is still unclear because comparative studies on sal expression (except for Tribolium) are lacking, and functional data are (if at all existing) restricted to Insecta. RESULTS: Here, we provide additional data on arthropod tsh expression, show the first data on onychophoran tio/tsh expression, and provide a comprehensive investigation on sal expression patterns in arthropods and an onychophoran. CONCLUSIONS: Our data support the idea that tio/tsh genes are involved in the development of "trunk" segments by regulating limb development. Our data suggest further that the function of Sal is indeed unlikely to be conserved in trunk vs head development like in Drosophila, but early expression of sal is in line with a potential homeotic function, at least in Arthropoda.

4.
Int J Mol Sci ; 21(7)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32225111

RESUMEN

Echiura is one of the most intriguing major subgroups of phylum Annelida because, unlike most other annelids, echiuran adults lack metameric body segmentation. Urechis unicinctus lives in U-shape burrows of soft sediments. Little is known about the molecular mechanisms underlying the development of U. unicinctus. Herein, we overviewed the developmental process from zygote to juvenile U. unicinctus using immunohistochemistry and F-actin staining for the nervous and muscular systems, respectively. Through F-actin staining, we found that muscle fibers began to form in the trochophore phase and that muscles for feeding were produced first. Subsequently, in the segmentation larval stage, the transversal muscle was formed in the shape of a ring in an anterior-to-posterior direction with segment formation, as well as a ventromedian muscle for the formation of a ventral nerve cord. After that, many muscle fibers were produced along the entire body and formed the worm-shaped larva. Finally, we investigated the spatiotemporal expression of Uun_st-mhc, Uun_troponin I, Uun_calponin, and Uun_twist genes found in U. unicinctus. During embryonic development, the striated and smooth muscle genes were co-expressed in the same region. However, the adult body wall muscles showed differential gene expression of each muscle layer. The results of this study will provide the basis for the understanding of muscle differentiation in Echiura.


Asunto(s)
Anélidos/crecimiento & desarrollo , Desarrollo de Músculos , Actinas/genética , Actinas/metabolismo , Animales , Músculos/metabolismo , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...