Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 164, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167878

RESUMEN

Dopamine (DA) plays a critical role in striatal motor control. The drop in DA level within the dorsal striatum is directly associated with the appearance of motor symptoms in Parkinson's disease (PD). The progression of the disease and inherent disruption of the DA neurotransmission has been closely related to accumulation of the synaptic protein α-synuclein. However, it is still unclear how α-synuclein affects dopaminergic terminals in different areas of dorsal striatum. Here we demonstrate that the overexpression of human α-synuclein (h-α-syn) interferes with the striatal DA neurotransmission in an age-dependent manner, preferentially in the dorsolateral striatum (DLS) of PDGF-h-α-syn mice. While 3-month-old mice showed an increase at the onset of h-α-syn accumulation in the DLS, 12-month-old mice revealed a decrease in electrically-evoked DA release. The enhanced DA release in 3-month-old mice coincided with better performance in a behavioural task. Notably, DA amplitude alterations were also accompanied by a delay in the DA clearance independently from the animal age. Structurally, dopamine transporter (DAT) was found to be redistributed in larger DAT-positive clumps only in the DLS of 3- and 12-month-old mice. Together, our data provide new insight into the vulnerability of DLS and suggest DAT-related dysfunctionalities from the very early stages of h-α-syn accumulation.


Asunto(s)
Enfermedad de Parkinson , Ratones , Humanos , Animales , Lactante , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Ratones Transgénicos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Dopamina/metabolismo , Cuerpo Estriado/metabolismo , Transmisión Sináptica
2.
Brain Pathol ; 32(2): e13036, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34806235

RESUMEN

Misfolded α-synuclein spreads along anatomically connected areas through the brain, prompting progressive neurodegeneration of the nigrostriatal pathway in Parkinson's disease. To investigate the impact of early stage seeding and spreading of misfolded α-synuclein along with the nigrostriatal pathway, we studied the pathophysiologic effect induced by a single acute α-synuclein preformed fibrils (PFFs) inoculation into the midbrain. Further, to model the progressive vulnerability that characterizes the dopamine (DA) neuron life span, we used two cohorts of mice with different ages: 2-month-old (young) and 5-month-old (adult) mice. Two months after α-synuclein PFFs injection, we found that striatal DA release decreased exclusively in adult mice. Adult DA neurons showed an increased level of pathology spreading along with the nigrostriatal pathway accompanied with a lower volume of α-synuclein deposition in the midbrain, impaired neurotransmission, rigid DA terminal composition, and less microglial reactivity compared with young neurons. Notably, preserved DA release and increased microglial coverage in the PFFs-seeded hemisphere coexist with decreased large-sized terminal density in young DA neurons. This suggests the presence of a targeted pruning mechanism that limits the detrimental effect of α-synuclein early spreading. This study suggests that the impact of the pathophysiology caused by misfolded α-synuclein spreading along the nigrostriatal pathway depends on the age of the DA network, reducing striatal DA release specifically in adult mice.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Cuerpo Estriado/patología , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ratones , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
3.
J Neuroinflammation ; 17(1): 208, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32660586

RESUMEN

BACKGROUND: P301S tau transgenic mice show age-dependent accumulation of neurofibrillary tangles in the brainstem, hippocampus, and neocortex, leading to neuronal loss and cognitive deterioration. However, there is hitherto only sparse documentation of the role of neuroinflammation in tau mouse models. Thus, we analyzed longitudinal microglial activation by small animal 18 kDa translocator protein positron-emission-tomography (TSPO µPET) imaging in vivo, in conjunction with terminal assessment of tau pathology, spatial learning, and cerebral glucose metabolism. METHODS: Transgenic P301S (n = 33) and wild-type (n = 18) female mice were imaged by 18F-GE-180 TSPO µPET at the ages of 1.9, 3.9, and 6.4 months. We conducted behavioral testing in the Morris water maze, 18F-fluordesoxyglucose (18F-FDG) µPET, and AT8 tau immunohistochemistry at 6.3-6.7 months. Terminal microglial immunohistochemistry served for validation of TSPO µPET results in vivo, applying target regions in the brainstem, cortex, cerebellum, and hippocampus. We compared the results with our historical data in amyloid-ß mouse models. RESULTS: TSPO expression in all target regions of P301S mice increased exponentially from 1.9 to 6.4 months, leading to significant differences in the contrasts with wild-type mice at 6.4 months (+ 11-23%, all p < 0.001), but the apparent microgliosis proceeded more slowly than in our experience in amyloid-ß mouse models. Spatial learning and glucose metabolism of AT8-positive P301S mice were significantly impaired at 6.3-6.5 months compared to the wild-type group. Longitudinal increases in TSPO expression predicted greater tau accumulation and lesser spatial learning performance at 6.3-6.7 months. CONCLUSIONS: Monitoring of TSPO expression as a surrogate of microglial activation in P301S tau transgenic mice by µPET indicates a delayed time course when compared to amyloid-ß mouse models. Detrimental associations of microglial activation with outcome parameters are opposite to earlier data in amyloid-ß mouse models. The contribution of microglial response to pathology accompanying amyloid-ß and tau over-expression merits further investigation.


Asunto(s)
Encéfalo/metabolismo , Receptores de GABA/biosíntesis , Aprendizaje Espacial/fisiología , Proteínas tau/metabolismo , Animales , Encéfalo/patología , Femenino , Predicción , Expresión Génica , Ratones , Ratones Transgénicos , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Receptores de GABA/genética , Proteínas tau/genética
4.
Neuropharmacology ; 152: 22-29, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30682345

RESUMEN

Dopamine D4 receptor (D4R) stimulation, in a putative D4R/µ opioid heteroreceptor (MOR) complex, counteracts the molecular, cellular and behavioural actions of morphine which are associated with morphine addiction, without any effect on its analgesic properties. In the present work, we have evaluated the role of D4R in modulating the effects of a continuous treatment with morphine on the GABAergic system in the basal ganglia. It has been demonstrated that the co-administration of a D4R agonist together with morphine leads to a restoration of GABA signaling by preventing drug-induced changes in GAD65/67 expression in the caudate putamen, globus palidus and substantia nigra. Results from GABABR1 and GABABR2 expression suggest a role of D4R in modulation of the GABAB heteroreceptor complexes along the basal ganglia, especially in the functional divisions of the caudate putamen. These results provide a new proof of the functional interaction between D4R and MOR and we postulate this putative heteroreceptor complex as a key target for the development of a new strategy to prevent the addictive effects of morphine in the treatment of pain. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.


Asunto(s)
Glutamato Descarboxilasa/metabolismo , Morfina/farmacología , Receptores de Dopamina D4/agonistas , Receptores de GABA-B/metabolismo , Analgésicos Opioides , Animales , Ganglios Basales/metabolismo , Agonistas de Dopamina/farmacología , Globo Pálido/efectos de los fármacos , Globo Pálido/metabolismo , Putamen/efectos de los fármacos , Putamen/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Opioides mu , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo
5.
Addict Biol ; 22(5): 1232-1245, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27212105

RESUMEN

Morphine is one of the most effective drugs used for pain management, but it is also highly addictive. Morphine elicits acute and long-term adaptive changes at cellular and molecular level in the brain, which play a critical role in the development of tolerance, dependence and addiction. Previous studies indicated that the dopamine D4 receptor (D4 R) activation counteracts morphine-induced adaptive changes of the µ opioid receptor (MOR) signaling in the striosomes of the caudate putamen (CPu), as well as the induction of several Fos family transcription factors. Thus, it has been suggested that D4 R could play an important role avoiding some of the addictive effects of morphine. Here, using different drugs administration paradigms, it is determined that the D4 R agonist PD168,077 prevents morphine-induced activation of the nigrostriatal dopamine pathway and morphological changes of substantia nigra pars compacta (SNc) dopamine neurons, leading to a restoration of dopamine levels and metabolism in the CPu. Results from receptor autoradiography indicate that D4 R activation modulates MOR function in the substantia nigra pars reticulata (SNr) and the striosomes of the CPu, suggesting that these regions are critically involved in the modulation of SNc dopamine neuronal function through a functional D4 R/MOR interaction. In addition, D4 R activation counteracts the rewarding effects of morphine, as well as the development of hyperlocomotion and physical dependence without any effect on its analgesic properties. These results provide a novel role of D4 R agonist as a pharmacological strategy to prevent the adverse effects of morphine in the treatment of pain.


Asunto(s)
Analgésicos Opioides/farmacología , Benzamidas/farmacología , Agonistas de Dopamina/farmacología , Morfina/farmacología , Neostriado/efectos de los fármacos , Piperazinas/farmacología , Receptores de Dopamina D4/agonistas , Recompensa , Sustancia Negra/efectos de los fármacos , Animales , Autorradiografía , Núcleo Caudado/efectos de los fármacos , Núcleo Caudado/metabolismo , Tolerancia a Medicamentos , Masculino , Neostriado/metabolismo , Porción Compacta de la Sustancia Negra/efectos de los fármacos , Porción Compacta de la Sustancia Negra/metabolismo , Porción Reticular de la Sustancia Negra/efectos de los fármacos , Porción Reticular de la Sustancia Negra/metabolismo , Putamen/efectos de los fármacos , Putamen/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D4/metabolismo , Receptores Opioides mu/metabolismo , Trastornos Relacionados con Sustancias/metabolismo , Sustancia Negra/metabolismo
6.
Int J Mol Sci ; 15(1): 1481-98, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24451133

RESUMEN

The mu opioid receptor (MOR) is critical in mediating morphine analgesia. However, prolonged exposure to morphine induces adaptive changes in this receptor leading to the development of tolerance and addiction. In the present work we have studied whether the continuous administration of morphine induces changes in MOR protein levels, its pharmacological profile, and MOR-mediated G-protein activation in the striosomal compartment of the rat CPu, by using immunohistochemistry and receptor and DAMGO-stimulated [35S]GTPγS autoradiography. MOR immunoreactivity, agonist binding density and its coupling to G proteins are up-regulated in the striosomes by continuous morphine treatment in the absence of changes in enkephalin and dynorphin mRNA levels. In addition, co-treatment of morphine with the dopamine D4 receptor (D4R) agonist PD168,077 fully counteracts these adaptive changes in MOR, in spite of the fact that continuous PD168,077 treatment increases the [3H]DAMGO Bmax values to the same degree as seen after continuous morphine treatment. Thus, in spite of the fact that both receptors can be coupled to Gi/0 protein, the present results give support for the existence of antagonistic functional D4R-MOR receptor-receptor interactions in the adaptive changes occurring in MOR of striosomes on continuous administration of morphine.


Asunto(s)
Morfina/farmacología , Putamen/metabolismo , Receptores de Dopamina D4/metabolismo , Receptores Opioides mu/metabolismo , Transducción de Señal , Adaptación Fisiológica , Animales , Agonistas de Dopamina/farmacología , Dinorfinas/genética , Dinorfinas/metabolismo , Encefalinas/genética , Encefalinas/metabolismo , Masculino , Putamen/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D4/agonistas , Receptores Opioides mu/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...