Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Parasit Vectors ; 17(1): 61, 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38342888

RESUMEN

BACKGROUND: Usutu virus (USUV), which is closely related to West Nile virus (WNV), sharing a similar ecology and transmission cycle, was first reported in the UK in the southeast of England in 2020. Both USUV and WNV are emerging zoonotic viruses hosted by wild birds. The 2020 finding of USUV in England raised awareness of this virus and highlighted the importance of understanding the seasonality of Culex pipiens sensu lato (Cx. pipiens s.l.), the main enzootic vector of these viruses. Zoos are prime locations for trapping mosquitoes because of their infrastructure, security, and range of vertebrate hosts and aquatic habitats. METHODS: Three independent zoo-based case studies at four locations that cover the seasonality of Cx. pipiens s.l. in England were undertaken: (i) London Zoo (Zoological Society London [ZSL]) and surrounding areas, London; (ii) Chester Zoo (Cheshire); (ii) Twycross Zoo (Leicestershire); and (iv) Flamingo Land (zoo; North Yorkshire). Various adult mosquito traps were used to catch adult Cx. pipiens s.l. across seasons. RESULTS: High yields of Cx. pipiens s.l./Culex torrentium were observed in Biogents-Mosquitaire and Center for Disease Control and Prevention Gravid traps in all studies where these traps were used. Mosquito counts varied between sites and between years. Observations of adult Cx. pipiens s.l./Cx. torrentium abundance and modelling studies demonstrated peak adult abundance between late July and early August, with active adult female Cx. pipiens s.l./Cx. torrentium populations between May and September. CONCLUSIONS: The information collated in this study illustrates the value of multiple mosquito monitoring approaches in zoos to describe the seasonality of this UK vector across multiple sites in England and provides a framework that can be used for ongoing and future surveillance programmes and disease risk management strategies.


Asunto(s)
Culex , Culicidae , Flavivirus , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Femenino , Animales , Mosquitos Vectores , Inglaterra
2.
Parasit Vectors ; 17(1): 29, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254168

RESUMEN

BACKGROUND: Ticks are an important driver of veterinary health care, causing irritation and sometimes infection to their hosts. We explored epidemiological and geo-referenced data from > 7 million electronic health records (EHRs) from cats and dogs collected by the Small Animal Veterinary Surveillance Network (SAVSNET) in Great Britain (GB) between 2014 and 2021 to assess the factors affecting tick attachment in an individual and at a spatiotemporal level. METHODS: EHRs in which ticks were mentioned were identified by text mining; domain experts confirmed those with ticks on the animal. Tick presence/absence records were overlaid with a spatiotemporal series of climate, environment, anthropogenic and host distribution factors to produce a spatiotemporal regression matrix. An ensemble machine learning spatiotemporal model was used to fine-tune hyperparameters for Random Forest, Gradient-boosted Trees and Generalized Linear Model regression algorithms, which were then used to produce a final ensemble meta-learner to predict the probability of tick attachment across GB at a monthly interval and averaged long-term through 2014-2021 at a spatial resolution of 1 km. Individual host factors associated with tick attachment were also assessed by conditional logistic regression on a matched case-control dataset. RESULTS: In total, 11,741 consultations were identified in which a tick was recorded. The frequency of tick records was low (0.16% EHRs), suggesting an underestimation of risk. That said, increased odds for tick attachment in cats and dogs were associated with younger adult ages, longer coat length, crossbreeds and unclassified breeds. In cats, males and entire animals had significantly increased odds of recorded tick attachment. The key variables controlling the spatiotemporal risk for tick attachment were climatic (precipitation and temperature) and vegetation type (Enhanced Vegetation Index). Suitable areas for tick attachment were predicted across GB, especially in forests and grassland areas, mainly during summer, particularly in June. CONCLUSIONS: Our results can inform targeted health messages to owners and veterinary practitioners, identifying those animals, seasons and areas of higher risk for tick attachment and allowing for more tailored prophylaxis to reduce tick burden, inappropriate parasiticide treatment and potentially TBDs in companion animals and humans. Sentinel networks like SAVSNET represent a novel complementary data source to improve our understanding of tick attachment risk for companion animals and as a proxy of risk to humans.


Asunto(s)
Algoritmos , Mascotas , Adulto , Humanos , Masculino , Gatos , Animales , Perros , Femenino , Reino Unido/epidemiología , Factores de Riesgo , Análisis Espacio-Temporal
3.
Zoonoses Public Health ; 70(5): 371-382, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37128975

RESUMEN

Tahyna virus (TAHV) is an orthobunyavirus and was the first arbovirus isolated from mosquitoes in Europe and is associated with floodplain areas as a characteristic biotope, hares as reservoir hosts and the mammal-feeding mosquitoes Aedes vexans as the main vector. The disease caused by TAHV ("Valtice fever") was detected in people with acute flu-like illness in the 1960s, and later the medical significance of TAHV became the subject of many studies. Although TAHV infections are widespread, the prevalence and number of actual cases, clinical manifestations in humans and animals and the ecology of transmission by mosquitoes and their vertebrate hosts are rarely reported. Despite its association with meningitis in humans, TAHV is a neglected human pathogen with unknown public health importance in Central Europe, and a potential emerging disease threat elsewhere in Europe due to extreme summer flooding events.


Asunto(s)
Aedes , Arbovirus , Virus de la Encefalitis de California , Humanos , Animales , Mosquitos Vectores , Europa (Continente)/epidemiología , Mamíferos
4.
Ticks Tick Borne Dis ; 14(2): 102112, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36634470

RESUMEN

Hyalomma marginatum is the main vector of Crimean-Congo haemorrhagic fever virus (CCHFV) and spotted fever rickettsiae in Europe. The distribution of H. marginatum is currently restricted to parts of southern Europe, northern Africa and Asia, and one of the drivers limiting distribution is climate, particularly temperature. As temperatures rise with climate change, parts of northern Europe currently considered too cold for H. marginatum to be able to survive may become suitable, including the United Kingdom (UK), presenting a potential public health concern. Here we use a series of modelling methodologies to understand whether mean air temperatures across the UK during 2000-2019 were sufficient for H. marginatum nymphs to moult into adult stages and be able to overwinter in the UK if they were introduced on migratory birds. We then used UK-specific climate projections (UKCP18) to determine whether predicted temperatures would be sufficient to allow survival in future. We found that spring temperatures in parts of the UK during 2000-2019 were warm enough for predicted moulting to occur, but in all years except 2006, temperatures during September to December were too cold for overwintering to occur. Our analysis of the projections data suggests that whilst temperatures in the UK during September to December will increase in future, they are likely to remain below the threshold required for H. marginatum populations to become established.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Ixodidae , Animales , Temperatura , Reino Unido , Europa (Continente) , Fiebre Hemorrágica de Crimea/veterinaria
5.
Zoonoses Public Health ; 70(4): 304-314, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36660965

RESUMEN

Ticks are found across a range of habitats, with woodland being particularly important for high densities and prevalence of Borrelia infection. Assessments of risk in urban woodland can be difficult if there are low densities and small sample sizes for Borrelia prevalence estimates. This study targeted six urban woodlands with established tick populations, as well as six woodlands in peri-urban zones and six woodlands in rural zones in and around the cities of Bath and Southampton, in the South of England. Nymph densities were estimated, and 100 nymphs were tested from each of the 18 woodlands studied. Ixodes ricinus ticks were found in all woodlands surveyed, and overall density of nymphs (DON) per 100 m2 was 18.17 in urban woodlands, 26.0 in peri-urban woodlands and 17.67 in rural woodlands. Out of 600 nymphs tested across urban woodlands, 10.3% were infected with Borrelia. The same proportion of nymphs collected in rural woodlands were positive for Borrelia. In peri-urban woodlands, 10.8% of nymphs tested positive. Across both cities combined, density of infected nymphs (DIN) was 2.73 per 100 m2 in peri-urban woodland, 1.87 per 100 m2 in urban woodland and 1.82 per 100 m2 in rural woodland. Overall, DON, Borrelia prevalence and DIN did not differ significantly along an urban-rural gradient. This suggests the risk of Lyme borreliosis transmission could be similar, or perhaps even elevated in urban woodland if there is higher public footfall, subsequent contact with ticks and less awareness of the risks. This is particularly important from a public health perspective, as Borrelia garinii dominated across the gradient and this genospecies is linked to neuroborreliosis.


Asunto(s)
Borrelia , Ixodes , Enfermedad de Lyme , Animales , Prevalencia , Enfermedad de Lyme/epidemiología , Enfermedad de Lyme/veterinaria , Ecosistema , Ninfa
6.
Ticks Tick Borne Dis ; 14(2): 102103, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36525762

RESUMEN

Understanding the effects of local habitat and wider landscape connectivity factors on tick presence, nymph density and Borrelia species (spp.) prevalence in the tick population is important for identifying the public health risk from Lyme borreliosis. This multi-city study collected data in three southern England cities (Bath, Bristol, and Southampton) during spring, summer, and autumn in 2017. Focusing specifically on urban green space used for recreation which were clearly in urbanised areas, 72 locations were sampled. Additionally, geospatial datasets on urban green space coverage within 250 m and 1 km of sampling points, as well as distance to woodland were incorporated into statistical models. Distance to woodland was negatively associated with tick presence and nymph density, particularly during spring and summer. Furthermore, we observed an interaction effect between habitat and season for tick presence and nymph density, with woodland habitat having greater tick presence and nymph density during spring. Borrelia spp. infected Ixodes ricinus were found in woodland, woodland edge and under canopy habitats in Bath and Southampton. Overall Borrelia spp. prevalence in nymphs was 2.8%, similar to wider UK studies assessing prevalence in Ixodes ricinus in rural areas. Bird-related Borrelia genospecies dominated across sites, suggesting bird reservoir hosts may be important in urban green space settings for feeding and infecting ticks. Whilst overall density of infected nymphs across the three cities was low (0.03 per 100 m2), risk should be further investigated by incorporating data on tick bites acquired in urban settings, and subsequent Lyme borreliosis transmission.


Asunto(s)
Borrelia , Ixodes , Enfermedad de Lyme , Animales , Humanos , Ciudades , Parques Recreativos , Estaciones del Año , Enfermedad de Lyme/epidemiología , Ecosistema , Ninfa
7.
Med Vet Entomol ; 37(1): 96-104, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36239468

RESUMEN

The tick Ixodes ricinus (Ixodida: Ixodidae, Linnaeus) is the main vector of several pathogens including Borrelia burgdorferi s.l. (agent of Lyme borreliosis) and tick-borne encephalitis virus. Its distribution depends on many factors including suitable habitat, climate and presence of hosts. In this study, we present records of I. ricinus bites on humans, dogs (Canis lupus familiaris; Carnivora: Canidae, L.) and cats (Felis catus; Carnivora: Felidiae, L.) in the United Kingdom (UK) obtained through the Tick Surveillance Scheme between 2013 and 2020. We divided the UK into 20 km x 20 km grids and 9.2% (range 1.2%-30%) of grids had at least one record every year since 2013. Most regions reported a yearly increase in the percentage of grids reporting I. ricinus since 2013 and the highest changes occurred in the South and East England with 5%-6.7% of new grids reporting I. ricinus bites each year in areas that never reported ticks before. Spatiotemporal analyses suggested that, while all regions recorded I. ricinus in new areas every year, there was a yearly decline in the percentage of new areas covered, except for Scotland. We discuss potential drivers of tick expansion, including reforestation and increase in deer populations.


Asunto(s)
Borrelia burgdorferi , Canidae , Enfermedades de los Gatos , Ciervos , Enfermedades de los Perros , Ixodes , Enfermedad de Lyme , Animales , Humanos , Gatos , Perros , Enfermedad de Lyme/epidemiología , Enfermedad de Lyme/veterinaria , Reino Unido
8.
Med Vet Entomol ; 37(1): 152-163, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36309852

RESUMEN

Tick-borne disease risk is intrinsically linked to the distribution of tick vector species. To assess risk and anticipate disease emergence, an understanding of tick distribution, host associations, and seasonality is needed. This can be achieved, to some extent, using passive surveillance supported by engagement with the public, animal health, and public health experts. The Tick Surveillance Scheme (TSS) collects data and maps tick distribution across the United Kingdom (UK). Between 2017 and 2020, 3720 tick records were received and 39 tick species were detected. Most records were acquired in the UK, with a subset associated with recent overseas travel. The dominant UK acquired species was Ixodes ricinus (Ixodida: Ixodidae, Linnaeus), the main vector of Lyme borreliosis. Records peaked during May and June, highlighting a key risk period for tick bites. Other key UK species were detected, including Dermacentor reticulatus (Ixodida: Ixodidae, Fabricius) and Haemaphysalis punctata (Ixodida: Ixodidae, Canestrini & Fanzago) as well as several rarer species that may present novel tick-borne disease risk to humans and other animals. Updated tick distribution maps highlight areas in the UK where tick exposure has occurred. There is evidence of increasing human tick exposure over time, including during the COVID-19 pandemic, but seasonal patterns remain unchanged.


Asunto(s)
COVID-19 , Ixodes , Ixodidae , Infestaciones por Garrapatas , Enfermedades por Picaduras de Garrapatas , Humanos , Animales , Pandemias , Infestaciones por Garrapatas/epidemiología , Infestaciones por Garrapatas/veterinaria , COVID-19/epidemiología , COVID-19/veterinaria , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/veterinaria , Reino Unido/epidemiología
9.
Transbound Emerg Dis ; 69(6): 3684-3692, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36217722

RESUMEN

Usutu virus (USUV) is an emerging zoonotic arbovirus in Europe, where it primarily impacts Eurasian blackbirds (Turdus merula). For mosquito-borne viruses to persist in temperate areas, transovarial transmission in vectors or overwintering in either hosts or diapausing vectors must occur to facilitate autochthonous transmission. We undertook surveillance of hosts and vectors in 2021 to elucidate whether USUV had overwintered in the United Kingdom (UK) following its initial detection there in 2020. From 175 dead bird submissions, we detected 1 case of USUV infection, in a blackbird, from which a full USUV genome was derived. Using a molecular clock analysis, we demonstrate that the 2021 detection shared a most recent common ancestor with the 2020 Greater London, UK, USUV sequence. In addition, we identified USUV-specific neutralizing antibodies in 10 out of 86 serum samples taken from captive birds at the index site, demonstrating in situ cryptic infection and potential sustained transmission. However, from 4966 mosquitoes, we detected no USUV RNA suggesting that prevalence in the vector community was absent or low during sampling. Combined, these results suggest that USUV overwintered in the UK, thus providing empirical evidence for the continued northward expansion of this vector-borne viral disease. Currently, our detection indicates geographically restricted virus persistence. Further detections over time will be required to demonstrate long-term establishment. It remains unclear whether the UK, and by extension other high-latitude regions, can support endemic USUV infection.


Asunto(s)
Enfermedades de las Aves , Infecciones por Flavivirus , Flavivirus , Pájaros Cantores , Animales , Mosquitos Vectores , Flavivirus/genética , Infecciones por Flavivirus/epidemiología , Infecciones por Flavivirus/veterinaria , Reino Unido/epidemiología
10.
Sci Rep ; 12(1): 10298, 2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35717348

RESUMEN

Following the first detection in the United Kingdom of Usutu virus (USUV) in wild birds in 2020, we undertook a multidisciplinary investigation that combined screening host and vector populations with interrogation of national citizen science monitoring datasets to assess the potential for population impacts on avian hosts. Pathological findings from six USUV-positive wild passerines were non-specific, highlighting the need for molecular and immunohistochemical examinations to confirm infection. Mosquito surveillance at the index site identified USUV RNA in Culex pipiens s.l. following the outbreak. Although the Eurasian blackbird (Turdus merula) is most frequently impacted by USUV in Europe, national syndromic surveillance failed to detect any increase in occurrence of clinical signs consistent with USUV infection in this species. Furthermore, there was no increase in recoveries of dead blackbirds marked by the national ringing scheme. However, there was regional clustering of blackbird disease incident reports centred near the index site in 2020 and a contemporaneous marked reduction in the frequency with which blackbirds were recorded in gardens in this area, consistent with a hypothesis of disease-mediated population decline. Combining results from multidisciplinary schemes, as we have done, in real-time offers a model for the detection and impact assessment of future disease emergence events.


Asunto(s)
Enfermedades de las Aves , Infecciones por Flavivirus , Flavivirus , Pájaros Cantores , Animales , Brotes de Enfermedades/veterinaria , Flavivirus/genética , Infecciones por Flavivirus/epidemiología , Infecciones por Flavivirus/veterinaria , Mosquitos Vectores , Reino Unido/epidemiología
11.
Artículo en Inglés | MEDLINE | ID: mdl-35627370

RESUMEN

Where ticks are found, tick-borne diseases can present a threat to human and animal health. The aetiology of many of these important diseases, including Lyme disease, bovine babesiosis, tick-borne fever and louping ill, have been known for decades whilst others have only recently been documented in the United Kingdom (UK). Further threats such as the importation of exotic ticks through human activity or bird migration, combined with changes to either the habitat or climate could increase the risk of tick-borne disease persistence and transmission. Prevention of tick-borne diseases for the human population and animals (both livestock and companion) is dependent on a thorough understanding of where and when pathogen transmission occurs. This information can only be gained through surveillance that seeks to identify where tick populations are distributed, which pathogens are present within those populations, and the periods of the year when ticks are active. To achieve this, a variety of approaches can be applied to enhance knowledge utilising a diverse range of stakeholders (public health professionals and veterinarians through to citizen scientists). Without this information, the application of mitigation strategies to reduce pathogen transmission and impact is compromised and the ability to monitor the effects of climate change or landscape modification on the risk of tick-borne disease is more challenging. However, as with many public and animal health interventions, there needs to be a cost-benefit assessment on the most appropriate intervention applied. This review will assess the challenges of tick-borne diseases in the UK and argue for a cross-disciplinary approach to their surveillance and control.


Asunto(s)
Enfermedad de Lyme , Salud Única , Enfermedades por Picaduras de Garrapatas , Garrapatas , Animales , Enfermedad de Lyme/epidemiología , Enfermedad de Lyme/prevención & control , Enfermedades por Picaduras de Garrapatas/epidemiología , Reino Unido/epidemiología
12.
Med Vet Entomol ; 36(3): 356-370, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35521893

RESUMEN

The density of Borrelia burgdorferi-infected Ixodes ricinus nymphs (DIN) was investigated during 2013-2017 across a Lyme disease-endemic landscape in southern England. The density of nymphs (DON), nymph infection prevalence (NIP), and DIN varied across five different natural habitats, with the highest DIN in woodland edge and high biodiversity woodlands. DIN was significantly lower in scrub grassland compared to the woodland edge, with low DON and no evidence of infection in ticks in non-scrub grassland. Over the 5 years, DON, NIP and DIN were comparable within habitats, except in 2014, with NIP varying three-fold and DIN significantly lower compared to 2015-2017. Borrelia garinii was most common, with bird-associated Borrelia (B. garinii/valaisiana) accounting for ~70% of all typed sequences. Borrelia burgdorferi sensu stricto was more common than B. afzelii. Borrelia afzelii was more common in scrub grassland than woodland and absent in some years. The possible impact of scrub on grazed grassland, management of ecotonal woodland margins with public access, and the possible role of birds/gamebirds impacting NIP are discussed. Mean NIP was 7.6%, highlighting the potential risk posed by B. burgdorferi in this endemic area. There is a need for continued research to understand its complex ecology and identify strategies for minimizing risk to public health, through habitat/game management and public awareness.


Asunto(s)
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Borrelia , Ixodes , Enfermedad de Lyme , Animales , Enfermedad de Lyme/epidemiología , Enfermedad de Lyme/veterinaria , Ninfa
13.
Ticks Tick Borne Dis ; 13(4): 101965, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35597188

RESUMEN

Human granulocytic anaplasmosis and tick-borne fever, affecting livestock, are diseases caused by an infection with the bacterium Anaplasma phagocytophilum. Its transmission dynamics between vertebrate hosts and ticks remain largely unknown and the potential impact on public health in the United Kingdom is unclear. This study aimed to assess the distribution and estimate the prevalence of A. phagocytophilum in questing Ixodes ricinus at recreational locations across England and Wales over six years. An additional objective was to investigate possible associations between prevalence, habitat and presence of ruminant hosts. Ixodes ricinus ticks were collected each spring at 20 recreational locations across England and Wales between 2014 and 2019. Nymphs were tested for infection with A. phagocytophilum by detection of bacterial genome in DNA extracts, targeting the msp2 gene locus. Positive samples were further investigated for the presence of different ecotypes based on the GroEL region. Of 3,919 nymphs tested, the mean infection prevalence was 3.6% [95%CI: 3.1-4.3] and ranged from 0 to 20.4%. Northern England had a higher overall prevalence (4.7% [95%CI: 3.4-6.4]) compared to Southern England (1.8% [95%CI: 1.3-2.5]) and the presence of sheep was associated with higher A. phagocytophilum prevalence (8.4% [95%CI: 6.9-10.1] vs 1.2% [95%CI: 0.8-1.7] when absent). There was also a negative correlation with the prevalence of Borrelia burgdorferi s.l. (causing Lyme borreliosis). When investigating the diversity of A. phagocytophilum, ecotype I accounted for 86.8% of samples and ecotype II for 13.2%. Our study presents an overview of A. phagocytophilum prevalence in questing I. ricinus in recreational areas across England and Wales and discusses the potential public and veterinary health relevance.


Asunto(s)
Anaplasma phagocytophilum , Borrelia burgdorferi , Ixodes , Anaplasma phagocytophilum/genética , Animales , Borrelia burgdorferi/genética , Ixodes/microbiología , Ninfa , Prevalencia , Ovinos , Gales/epidemiología
14.
Front Public Health ; 10: 809763, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444989

RESUMEN

Public and animal health authorities face many challenges in surveillance and control of vector-borne diseases. Those challenges are principally due to the multitude of interactions between vertebrate hosts, pathogens, and vectors in continuously changing environments. VectorNet, a joint project of the European Food Safety Authority (EFSA) and the European Centre for Disease Prevention and Control (ECDC) facilitates risk assessments of VBD threats through the collection, mapping and sharing of distribution data for ticks, mosquitoes, sand flies, and biting midges that are vectors of pathogens of importance to animal and/or human health in Europe. We describe the development and maintenance of this One Health network that celebrated its 10th anniversary in 2020 and the value of its most tangible outputs, the vector distribution maps, that are freely available online and its raw data on request. VectorNet encourages usage of these maps by health professionals and participation, sharing and usage of the raw data by the network and other experts in the science community. For the latter, a more complete technical description of the mapping procedure will be submitted elsewhere.


Asunto(s)
Vectores de Enfermedades , Animales , Europa (Continente)/epidemiología
15.
Zoonoses Public Health ; 69(3): 153-166, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35122422

RESUMEN

For more than three decades, it has been recognized that Ixodes ricinus ticks occur in urban green space in Europe and that they harbour multiple pathogens linked to both human and animal diseases. Urban green space use for health and well-being, climate mitigation or biodiversity goals is promoted, often without consideration for the potential impact on tick encounters or tick-borne disease outcomes. This review synthesizes the results of over 100 publications on questing I. ricinus and Borrelia spp. infections in ticks in urban green space in 24 European countries. It presents data on several risk indicators for Lyme borreliosis and highlights key research gaps and recommendations for future studies. Across Europe, mean density of I. ricinus in urban green space was 6.9 (range; 0.1-28.8) per 100 m2 and mean Borrelia prevalence was 17.3% (range; 3.1%-38.1%). Similar density estimates were obtained for nymphs, which had a Borrelia prevalence of 14.2% (range; 0.5%-86.7%). Few studies provided data on both questing nymph density and Borrelia prevalence, but those that did found an average of 1.7 (range; 0-5.6) Borrelia-infected nymphs per 100 m2 of urban green space. Although a wide range of genospecies were reported, Borrelia afzelii was the most common in most parts of Europe, except for England where B. garinii was more common. The emerging pathogen Borrelia miyamotoi was also found in several countries, but with a much lower prevalence (1.5%). Our review highlights that I. ricinus and tick-borne Borrelia pathogens are found in a wide range of urban green space habitats and across several seasons. The impact of human exposure to I. ricinus and subsequent Lyme borreliosis incidence in urban green space has not been quantified. There is also a need to standardize sampling protocols to generate better baseline data for the density of ticks and Borrelia prevalence in urban areas.


Asunto(s)
Borrelia , Ixodes , Enfermedad de Lyme , Animales , Europa (Continente)/epidemiología , Enfermedad de Lyme/epidemiología , Enfermedad de Lyme/veterinaria , Ninfa , Parques Recreativos
16.
Microb Ecol ; 84(2): 613-626, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34580739

RESUMEN

Rickettsiella species are bacterial symbionts that are present in a great variety of arthropod species, including ixodid ticks. However, little is known about their genetic diversity and distribution in Ixodes ricinus, as well as their relationship with other tick-associated bacteria. In this study, we investigated the occurrence and the genetic diversity of Rickettsiella spp. in I. ricinus throughout Europe and evaluated any preferential and antagonistic associations with Candidatus Midichloria mitochondrii and the pathogens Borrelia burgdorferi sensu lato and Borrelia miyamotoi. Rickettsiella spp. were detected in most I. ricinus populations investigated, encompassing a wide array of climate types and environments. The infection prevalence significantly differed between geographic locations and was significantly higher in adults than in immature life stages. Phylogenetic investigations and protein characterization disclosed four Rickettsiella clades (I-IV). Close phylogenetic relations were observed between Rickettsiella strains of I. ricinus and other arthropod species. Isolation patterns were detected for Clades II and IV, which were restricted to specific geographic areas. Lastly, although coinfections occurred, we did not detect significant associations between Rickettsiella spp. and the other tick-associated bacteria investigated. Our results suggest that Rickettsiella spp. are a genetically and biologically diverse facultative symbiont of I. ricinus and that their distribution among tick populations could be influenced by environmental components.


Asunto(s)
Coxiellaceae , Ixodes , Animales , Europa (Continente) , Variación Genética , Ixodes/microbiología , Filogenia
17.
Ticks Tick Borne Dis ; 13(1): 101857, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34763308

RESUMEN

Urban green spaces provide an opportunity for contact between members of the public and ticks infected with pathogens. Understanding tick distribution within these areas and the drivers for increased tick density or Borrelia infection are important from a risk management perspective. This study aimed to generate data on tick presence, nymph density and Borrelia infection across a range of urban green space habitats, in order to identify those that may potentially present a higher risk of Lyme borreliosis to members of the public. Several sites were visited across the English city of Bath during 2015 and 2016. Tick presence was confirmed in all habitats surveyed, with increased likelihood in woodland and woodland edge. Highest nymph densities were also reported in these habitats, along with grassland during one of the sampling years. Adult ticks were more likely to be infected compared to nymphs, and the highest densities of infected nymphs were associated with woodland edge habitat. In addition to Lyme borreliosis causing Borrelia genospecies, Borrelia miyamotoi was also detected at several sites. This study adds to the growing evidence that urban green space habitats present a public health risk from tick bites, and this has implications for many policy areas including health and wellbeing, climate adaptation and urban green space planning.


Asunto(s)
Ixodes , Enfermedad de Lyme , Animales , Ecosistema , Inglaterra/epidemiología , Bosques , Enfermedad de Lyme/epidemiología , Ninfa
18.
Exp Appl Acarol ; 84(3): 593-606, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34125334

RESUMEN

Assessing the risk of tick-borne disease in areas with high visitor numbers is important from a public health perspective. Evidence suggests that tick presence, density, infection prevalence and the density of infected ticks can vary between habitats within urban green space, suggesting that the risk of Lyme borreliosis transmission can also vary. This study assessed nymph density, Borrelia prevalence and the density of infected nymphs across a range of habitat types in nine parks in London which receive millions of visitors each year. Ixodes ricinus were found in only two of the nine locations sampled, and here they were found in all types of habitat surveyed. Established I. ricinus populations were identified in the two largest parks, both of which had resident free-roaming deer populations. Highest densities of nymphs (15.68 per 100 m2) and infected nymphs (1.22 per 100 m2) were associated with woodland and under canopy habitats in Richmond Park, but ticks infected with Borrelia were found across all habitat types surveyed. Nymphs infected with Borrelia (7.9%) were only reported from Richmond Park, where Borrelia burgdorferi sensu stricto and Borrelia afzelii were identified as the dominant genospecies. Areas with short grass appeared to be less suitable for ticks and maintaining short grass in high footfall areas could be a good strategy for reducing the risk of Lyme borreliosis transmission to humans in such settings. In areas where this would create conflict with existing practices which aim to improve and/or meet historic landscape, biodiversity and public access goals, promoting public health awareness of tick-borne disease risks could also be utilised.


Asunto(s)
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Ciervos , Ixodes , Enfermedad de Lyme , Animales , Londres/epidemiología , Enfermedad de Lyme/epidemiología , Ninfa , Reino Unido
19.
PLoS Negl Trop Dis ; 15(3): e0009153, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33770107

RESUMEN

Dengue is considered non-endemic to mainland China. However, travellers frequently import the virus from overseas and local mosquito species can then spread the disease in the population. As a consequence, mainland China still experiences large dengue outbreaks. Temperature plays a key role in these outbreaks: it affects the development and survival of the vector and the replication rate of the virus. To better understand its implication in the transmission risk of dengue, we developed a delay differential equation model that explicitly simulates temperature-dependent development periods and tested it with collected field data for the Asian tiger mosquito, Aedes albopictus. The model predicts mosquito occurrence locations with a high accuracy (Cohen's κ of 0.78) and realistically replicates mosquito population dynamics. Analysing the infection dynamics during the 2014 dengue outbreak that occurred in Guangzhou showed that the outbreak could have lasted for another four weeks if mosquito control interventions had not been undertaken. Finally, we analyse the dengue transmission risk in mainland China. We find that southern China, including Guangzhou, can have more than seven months of dengue transmission per year while even Beijing, in the temperate north, can have dengue transmission during hot summer months. The results demonstrate the importance of using detailed vector and infection ecology, especially when vector-borne disease transmission risk is modelled over a broad range of climatic zones.


Asunto(s)
Aedes/fisiología , Dengue/transmisión , Aedes/virología , Animales , China , Virus del Dengue , Brotes de Enfermedades , Humanos , Modelos Teóricos , Mosquitos Vectores/fisiología , Mosquitos Vectores/virología , Temperatura
20.
Pathogens ; 10(2)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572506

RESUMEN

Rodents carry many ectoparasites, such as ticks, lice, fleas, and mites, which have potential public health importance. Middle Eastern countries are hotspots for many emerging and re-emerging infectious diseases, such as plague, leishmaniasis, Crimean Congo hemorrhagic fever, and Q fever, due to their ecological, socioeconomic, and political diversity. Rodent ectoparasites can act as vectors for many of these pathogens. Knowledge of rodent ectoparasites is of prime importance in controlling rodent ectoparasite-borne zoonotic diseases in this region. The current systematic review and meta-analysis performs a comprehensive synthesis of the available knowledge, providing an evidence-based overview of the ectoparasites detected on rodents in Middle Eastern countries. Following a systematic search in Pubmed, Scopus, and Web of Science, a total of 113 published articles on rodent ectoparasites were studied and analyzed. A total of 87 rodent species were documented, from which Mus musculus, Rattus norvegicus, and Rattus rattus were found to be the most common. Fleas were the most reported ectoparasites (87 articles), followed by mites (53), ticks (44), and lice (25). Xenopsylla cheopis, Polyplax spinulosa, Ornithonyssus bacoti, and Hyalomma rhipicephaloides were the most commonly described fleas, lice, mites, and ticks, respectively. Based on the reviewed articles, the median flea, louse, mite, and tick indices were highest in Israel (4.15), Egypt (1.39), Egypt (1.27), and Saudi Arabia (1.17), respectively. Quantitative meta-analysis, using a random-effects model, determined the overall pooled flea prevalence in the Middle East as 40% (95% CI: 25-55, I2 = 100%, p < 0.00001), ranging between 13% (95% CI: 0-30, I2 = 95%, p < 0.00001) in Iran and 59% (95% CI: 42-77, I2 = 75%, p < 0.00001) in Israel. The overall pooled louse prevalence was found to be 30% (95% CI: 13-47, I2 = 100%, p < 0.00001), ranging between 25% in Iran (95% CI: 1-50, I2 = 99%) and 38% in Egypt (95% CI: 7-68, I2 = 100%). In the case of mites, the pooled prevalence in this region was 33% (95% CI: 11-55, I2 = 100%, p < 0.00001), where the country-specific prevalence estimates were 30% in Iran (95% CI: 4-56, I2 = 99%) and 32% in Egypt (95% CI: 0-76, I2 = 100%). For ticks, the overall prevalence was found to be 25% (95% CI: 2-47, I2 = 100%, p < 0.00001), ranging from 16% in Iran (95% CI: 7-25, I2 = 74%) to 42% in Egypt (95% CI: 1-85, I2 = 100%). The control of rodent ectoparasites should be considered to reduce their adverse effects. Using the One Health strategy, rodent control, and precisely control of the most common rodent species, i.e., Mus musculus, Rattus norvegicus, and Rattus rattus, should be considered to control the rodent-borne ectoparasites in this region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...