Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet Comp Oncol ; 22(1): 96-105, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237918

RESUMEN

The standard treatment for canine lymphoma is the CHOP chemotherapy regimen. Proteasome inhibitors have been employed with CHOP for the treatment of human haematological malignancies but remain to be fully explored in canine lymphoma. We identified an association between poor response to CHOP chemotherapy and high mRNA expression levels of proteasomal subunits in a cohort of 15 canine lymphoma patients, and sought to determine the effect of proteasome inhibitors on the viability of a canine B-cell lymphoma cell line (CLBL-1). The aim of this study was to investigate whether proteasome inhibitors sensitize these cells to the CHOP agents doxorubicin, vincristine and cyclophosphamide (as 4-hydroxycyclophosphamide/4-HC). CLBL-1 cells were sensitive to proteasome inhibition by bortezomib and ixazomib. The IC50 of bortezomib was 15.1 nM and of ixazomib was 59.14 nM. Proteasome inhibitors plus doxorubicin had a synergistic effect on CLBL-1 viability; proteosome inhibitors plus vincristine showed different effects depending on the combination ratio, and there was an antagonistic effect with 4-HC. These results may have clinical utility, as proteasome inhibition could potentially be used with a synergizing CHOP compound to improve responsiveness to chemotherapy for canine lymphoma patients.


Asunto(s)
Compuestos de Boro , Enfermedades de los Perros , Glicina/análogos & derivados , Linfoma , Humanos , Animales , Perros , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Bortezomib/farmacología , Bortezomib/uso terapéutico , Vincristina/farmacología , Vincristina/uso terapéutico , Complejo de la Endopetidasa Proteasomal , Enfermedades de los Perros/tratamiento farmacológico , Ciclofosfamida/farmacología , Ciclofosfamida/uso terapéutico , Prednisona/farmacología , Prednisona/uso terapéutico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Linfoma/tratamiento farmacológico , Linfoma/veterinaria
3.
BMC Res Notes ; 15(1): 111, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35317846

RESUMEN

OBJECTIVES: Canine lymphoma, the most common hematological cancer in dogs, shares many molecular and clinical characteristics with human Non-Hodgkin lymphoma (NHL). The standard treatment for canine lymphoma is "CHOP" multiagent chemotherapy protocol consisting of Cyclophosphamide, Doxorubicin (Hydroxydaunorubicin), Vincristine (Oncovin™), and Prednisone. Approximately 70-85% of patients treated with CHOP achieve clinical remission. However, duration of remission varies and the majority of dogs eventually relapse. To identify possible biomarkers for patients failing to achieve remission, we performed RNA-Seq analysis on 25 cases of canine lymphoma obtained prior the start of their CHOP therapy regime and assessed gene expression associated with patient progression free survival (PFS). DATA DESCRIPTION: The data consists of (1) raw RNA-Seq reads in 75 bp fastq format from fine needle aspirate samples of enlarged lymph nodes from canine patients with naturally occurring lymphoma; (2) Fragments Per Kilobase Million (FPKM) values for each sample; (3) raw transcript counts for each sample; (4) anonymized patient details including PFS; (5) heat map of gene expression and (6) Cox proportional hazard analysis showing significantly expressed genes. These data may be useful for comparative analysis of gene expression in human NHL and analysis of gene expression associated with disease outcome in canine lymphoma.


Asunto(s)
Enfermedades de los Perros , Linfoma , Animales , Enfermedades de los Perros/tratamiento farmacológico , Enfermedades de los Perros/genética , Perros , Expresión Génica , Humanos , Linfoma/tratamiento farmacológico , Linfoma/genética , Linfoma/veterinaria , Recurrencia Local de Neoplasia , RNA-Seq
4.
Front Cell Dev Biol ; 9: 626821, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33834021

RESUMEN

Deciphering the functional impact of genetic variation is required to understand phenotypic diversity and the molecular mechanisms of inherited disease and cancer. While millions of genetic variants are now mapped in genome sequencing projects, distinguishing functional variants remains a major challenge. Protein-coding variation can be interpreted using post-translational modification (PTM) sites that are core components of cellular signaling networks controlling molecular processes and pathways. ActiveDriverDB is an interactive proteo-genomics database that uses more than 260,000 experimentally detected PTM sites to predict the functional impact of genetic variation in disease, cancer and the human population. Using machine learning tools, we prioritize proteins and pathways with enriched PTM-specific amino acid substitutions that potentially rewire signaling networks via induced or disrupted short linear motifs of kinase binding. We then map these effects to site-specific protein interaction networks and drug targets. In the 2021 update, we increased the PTM datasets by nearly 50%, included glycosylation, sumoylation and succinylation as new types of PTMs, and updated the workflows to interpret inherited disease mutations. We added a recent phosphoproteomics dataset reflecting the cellular response to SARS-CoV-2 to predict the impact of human genetic variation on COVID-19 infection and disease course. Overall, we estimate that 16-21% of known amino acid substitutions affect PTM sites among pathogenic disease mutations, somatic mutations in cancer genomes and germline variants in the human population. These data underline the potential of interpreting genetic variation through the lens of PTMs and signaling networks. The open-source database is freely available at www.ActiveDriverDB.org.

5.
Nature ; 580(7803): 402-408, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32296183

RESUMEN

Global insights into cellular organization and genome function require comprehensive understanding of the interactome networks that mediate genotype-phenotype relationships1,2. Here we present a human 'all-by-all' reference interactome map of human binary protein interactions, or 'HuRI'. With approximately 53,000 protein-protein interactions, HuRI has approximately four times as many such interactions as there are high-quality curated interactions from small-scale studies. The integration of HuRI with genome3, transcriptome4 and proteome5 data enables cellular function to be studied within most physiological or pathological cellular contexts. We demonstrate the utility of HuRI in identifying the specific subcellular roles of protein-protein interactions. Inferred tissue-specific networks reveal general principles for the formation of cellular context-specific functions and elucidate potential molecular mechanisms that might underlie tissue-specific phenotypes of Mendelian diseases. HuRI is a systematic proteome-wide reference that links genomic variation to phenotypic outcomes.


Asunto(s)
Proteoma/metabolismo , Espacio Extracelular/metabolismo , Humanos , Especificidad de Órganos , Mapeo de Interacción de Proteínas
6.
Nat Commun ; 11(1): 735, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024846

RESUMEN

Multi-omics datasets represent distinct aspects of the central dogma of molecular biology. Such high-dimensional molecular profiles pose challenges to data interpretation and hypothesis generation. ActivePathways is an integrative method that discovers significantly enriched pathways across multiple datasets using statistical data fusion, rationalizes contributing evidence and highlights associated genes. As part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumor types, we integrated genes with coding and non-coding mutations and revealed frequently mutated pathways and additional cancer genes with infrequent mutations. We also analyzed prognostic molecular pathways by integrating genomic and transcriptomic features of 1780 breast cancers and highlighted associations with immune response and anti-apoptotic signaling. Integration of ChIP-seq and RNA-seq data for master regulators of the Hippo pathway across normal human tissues identified processes of tissue regeneration and stem cell regulation. ActivePathways is a versatile method that improves systems-level understanding of cellular organization in health and disease through integration of multiple molecular datasets and pathway annotations.


Asunto(s)
Biología Computacional/métodos , Redes y Vías Metabólicas/genética , Neoplasias/genética , Neoplasias/metabolismo , Transducción de Señal , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Inmunoprecipitación de Cromatina , Bases de Datos Factuales , Femenino , Dosificación de Gen , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Genómica/métodos , Vía de Señalización Hippo , Humanos , Mutación , Pronóstico , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...