Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38971154

RESUMEN

Rough endoplasmic reticulum (ER) sheets are a fundamental domain of the ER and the gateway into the secretory pathway. Although reticulon proteins stabilize high-curvature ER tubules, it is unclear whether other proteins scaffold the flat membranes of rough ER sheets. Through a proteomics screen using ER sheet-localized RNA-binding proteins as bait, we identify the sigma-1 receptor (SigmaR1) as an ER sheet-shaping factor. High-resolution live cell imaging and electron tomography assign SigmaR1 as an ER sheet-localized factor whose levels determine the amount of rough ER sheets in cells. Structure-guided mutagenesis and in vitro reconstitution on giant unilamellar vesicles further support a mechanism whereby SigmaR1 oligomers use their extended arrays of amphipathic helices to bind and flatten the lumenal leaflet of ER membranes to oppose membrane curvature and stabilize rough ER sheets.

2.
Dev Cell ; 57(11): 1369-1382.e6, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35609616

RESUMEN

The endoplasmic reticulum (ER) confronts a challenge to accommodate long, smooth ER tubules into the structural complexity of the axonal compartment. Here, we describe a morphological feature for the axonal ER network in developing neurons we termed the ER ladder. Axonal ER ladders are composed of rungs that wrap tightly around the microtubule bundle and dynamic rails, which slide across microtubules. We found that the ER-shaping protein Reticulon 2 determines the architecture and dynamics of the axonal ER ladder by modulating its interaction with microtubules. Moreover, we show that ER ladder depletion impairs the trafficking of associated vesicular axonal cargoes. Finally, we demonstrate that stromal interaction molecule 1 (Stim1) localizes to ER rungs and translocates to ER-plasma membrane contact sites upon depletion of luminal Ca2+. Our findings uncover fundamental insights into the structural and functional organization of the axonal ER network in developing mammalian neurons.


Asunto(s)
Axones , Retículo Endoplásmico , Animales , Axones/metabolismo , Calcio/metabolismo , Citoesqueleto/metabolismo , Retículo Endoplásmico/metabolismo , Mamíferos/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo
3.
Genetics ; 218(2)2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33752231

RESUMEN

The mitotic spindle is resilient to perturbation due to the concerted, and sometimes redundant, action of motors and microtubule-associated proteins. Here, we utilize an inducible ectopic microtubule nucleation site in the nucleus of Saccharomyces cerevisiae to study three necessary steps in the formation of a bipolar array: the recruitment of the γ-tubulin complex, nucleation and elongation of microtubules (MTs), and the organization of MTs relative to each other. This novel tool, an Spc110 chimera, reveals previously unreported roles of the microtubule-associated proteins Stu2, Bim1, and Bik1, and the motors Vik1 and Kip3. We report that Stu2 and Bim1 are required for nucleation and that Bik1 and Kip3 promote nucleation at the ectopic site. Stu2, Bim1, and Kip3 join their homologs XMAP215, EB1 and kinesin-8 as promoters of microtubule nucleation, while Bik1 promotes MT nucleation indirectly via its role in SPB positioning. Furthermore, we find that the nucleation activity of Stu2 in vivo correlates with its polymerase activity in vitro. Finally, we provide the first evidence that Vik1, a subunit of Kar3/Vik1 kinesin-14, promotes microtubule minus end focusing at the ectopic site.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Núcleo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Mitosis , Proteínas Motoras Moleculares/genética , Mutación , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático/metabolismo
4.
Nat Microbiol ; 5(5): 757-767, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32203409

RESUMEN

Photosynthetic organisms regulate their responses to many diverse stimuli in an effort to balance light harvesting with utilizable light energy for carbon fixation and growth (source-sink regulation). This balance is critical to prevent the formation of reactive oxygen species that can lead to cell death. However, investigating the molecular mechanisms that underlie the regulation of photosynthesis in cyanobacteria using ensemble-based measurements remains a challenge due to population heterogeneity. Here, to address this problem, we used long-term quantitative time-lapse fluorescence microscopy, transmission electron microscopy, mathematical modelling and genetic manipulation to visualize and analyse the growth and subcellular dynamics of individual wild-type and mutant cyanobacterial cells over multiple generations. We reveal that mechanical confinement of actively growing Synechococcus sp. PCC 7002 cells leads to the physical disassociation of phycobilisomes and energetic decoupling from the photosynthetic reaction centres. We suggest that the mechanical regulation of photosynthesis is a critical failsafe that prevents cell expansion when light and nutrients are plentiful, but when space is limiting. These results imply that cyanobacteria must convert a fraction of the available light energy into mechanical energy to overcome frictional forces in the environment, providing insight into the regulation of photosynthesis and how microorganisms navigate their physical environment.


Asunto(s)
Cianobacterias/fisiología , Fotosíntesis/fisiología , Cianobacterias/citología , Cianobacterias/crecimiento & desarrollo , Fluorescencia , Luz , Modelos Teóricos , Ficobilisomas/fisiología , Synechococcus/crecimiento & desarrollo , Synechococcus/fisiología
5.
J Cell Sci ; 132(15)2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31243050

RESUMEN

Motile cilia generate directed hydrodynamic flow that is important for the motility of cells and extracellular fluids. To optimize directed hydrodynamic flow, motile cilia are organized and oriented into a polarized array. Basal bodies (BBs) nucleate and position motile cilia at the cell cortex. Cytoplasmic BB-associated microtubules are conserved structures that extend from BBs. By using the ciliate, Tetrahymena thermophila, combined with EM-tomography and light microscopy, we show that BB-appendage microtubules assemble coincidently with new BB assembly and that they are attached to the cell cortex. These BB-appendage microtubules are specifically marked by post translational modifications of tubulin, including glycylation. Mutations that prevent glycylation shorten BB-appendage microtubules and disrupt BB positioning and cortical attachment. Consistent with the attachment of BB-appendage microtubules to the cell cortex to position BBs, mutations that disrupt the cellular cortical cytoskeleton disrupt the cortical attachment and positioning of BBs. In summary, BB-appendage microtubules promote the organization of ciliary arrays through attachment to the cell cortex.


Asunto(s)
Cuerpos Basales/metabolismo , Cilios/metabolismo , Microtúbulos/metabolismo , Tetrahymena thermophila/metabolismo , Cuerpos Basales/ultraestructura , Cilios/genética , Glicosilación , Microtúbulos/genética , Microtúbulos/ultraestructura , Mutación , Tetrahymena thermophila/genética , Tetrahymena thermophila/ultraestructura
6.
Mol Biol Cell ; 29(19): 2280-2291, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30044722

RESUMEN

Phosphorylation modulates many cellular processes during cell cycle progression. The yeast centrosome (called the spindle pole body, SPB) is regulated by the protein kinases Mps1 and Cdc28/Cdk1 as it nucleates microtubules to separate chromosomes during mitosis. Previously we completed an SPB phosphoproteome, identifying 297 sites on 17 of the 18 SPB components. Here we describe mutagenic analysis of phosphorylation events on Spc29 and Spc42, two SPB core components that were shown in the phosphoproteome to be heavily phosphorylated. Mutagenesis at multiple sites in Spc29 and Spc42 suggests that much of the phosphorylation on these two proteins is not essential but enhances several steps of mitosis. Of the 65 sites examined on both proteins, phosphorylation of the Mps1 sites Spc29-T18 and Spc29-T240 was shown to be critical for function. Interestingly, these two sites primarily influence distinct successive steps; Spc29-T240 is important for the interaction of Spc29 with Spc42, likely during satellite formation, and Spc29-T18 facilitates insertion of the new SPB into the nuclear envelope and promotes anaphase spindle elongation. Phosphorylation sites within Cdk1 motifs affect function to varying degrees, but mutations only have significant effects in the presence of an MPS1 mutation, supporting a theme of coregulation by these two kinases.


Asunto(s)
Centrosoma/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alelos , Centrosoma/ultraestructura , Modelos Biológicos , Mutación/genética , Fosforilación , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/ultraestructura , Cuerpos Polares del Huso/metabolismo , Cuerpos Polares del Huso/ultraestructura
7.
Mol Biol Cell ; 27(15): 2394-403, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27251062

RESUMEN

Basal bodies comprise nine symmetric triplet microtubules that anchor forces produced by the asymmetric beat pattern of motile cilia. The ciliopathy protein Poc1 stabilizes basal bodies through an unknown mechanism. In poc1∆ cells, electron tomography reveals subtle defects in the organization of intertriplet linkers (A-C linkers) that connect adjacent triplet microtubules. Complete triplet microtubules are lost preferentially near the posterior face of the basal body. Basal bodies that are missing triplets likely remain competent to assemble new basal bodies with nine triplet microtubules, suggesting that the mother basal body microtubule structure does not template the daughter. Our data indicate that Poc1 stabilizes basal body triplet microtubules through linkers between neighboring triplets. Without this stabilization, specific triplet microtubules within the basal body are more susceptible to loss, probably due to force distribution within the basal body during ciliary beating. This work provides insights into how the ciliopathy protein Poc1 maintains basal body integrity.


Asunto(s)
Cuerpos Basales/ultraestructura , Microtúbulos/metabolismo , Cuerpos Basales/metabolismo , Centriolos/metabolismo , Cilios/genética , Cilios/metabolismo , Ciliopatías/genética , Ciliopatías/metabolismo , Tomografía con Microscopio Electrónico , Microtúbulos/genética , Proteínas Protozoarias/metabolismo , Tetrahymena/metabolismo
8.
Mol Biol Cell ; 25(3): 319-23, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24482357

RESUMEN

Researchers have used transmission electron microscopy (TEM) to make contributions to cell biology for well over 50 years, and TEM continues to be an important technology in our field. We briefly present for the neophyte the components of a TEM-based study, beginning with sample preparation through imaging of the samples. We point out the limitations of TEM and issues to be considered during experimental design. Advanced electron microscopy techniques are listed as well. Finally, we point potential new users of TEM to resources to help launch their project.


Asunto(s)
Células/citología , Microscopía Electrónica de Transmisión/instrumentación , Microscopía Electrónica de Transmisión/métodos , Animales , Biología Celular , Fijadores , Humanos , Microtomía/métodos , Tetróxido de Osmio , Manejo de Especímenes , Coloración y Etiquetado/métodos
9.
J Cell Sci ; 126(Pt 7): 1659-71, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23426847

RESUMEN

Directed fluid flow, which is achieved by the coordinated beating of motile cilia, is required for processes as diverse as cellular swimming, developmental patterning and mucus clearance. Cilia are nucleated, anchored and aligned at the plasma membrane by basal bodies, which are cylindrical microtubule-based structures with ninefold radial symmetry. In the unicellular ciliate Tetrahymena thermophila, two centrin family members associated with the basal body are important for both basal body organization and stabilization. We have identified a family of 13 proteins in Tetrahymena that contain centrin-binding repeats related to those identified in the Saccharomyces cerevisiae Sfi1 protein. We have named these proteins Sfr1-Sfr13 (for Sfi1-repeat). Nine of the Sfr proteins localize in unique polarized patterns surrounding the basal body, suggesting non-identical roles in basal body organization and association with basal body accessory structures. Furthermore, the Sfr proteins are found in distinct basal body populations in Tetrahymena cells, indicating that they are responsive to particular developmental programs. A complete genetic deletion of one of the family members, Sfr13, causes unstable basal bodies and defects in daughter basal body separation from the mother, phenotypes also observed with centrin disruption. It is likely that the other Sfr family members are involved in distinct centrin functions, providing specificity to the tasks that centrins perform at basal bodies.


Asunto(s)
Centriolos/metabolismo , Proteínas Protozoarias/metabolismo , Tetrahymena thermophila/metabolismo
10.
Mol Biol Cell ; 22(13): 2221-34, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21562224

RESUMEN

The basal body is a microtubule-organizing center responsible for organizing the cilium, a structure important for cell locomotion and sensing of the surrounding environment. A widely conserved basal body component is the Ca(2+)-binding protein centrin. Analyses of centrin function suggest a role in basal body assembly and stability; however, its molecular mechanisms remain unclear. Here we describe a mutagenic strategy to study the function and essential nature of the various structural features of Cen1 in the ciliate Tetrahymena. We find that the two domains of Cen1 are both essential, and examination of strains containing mutant CEN1 alleles indicates that there are two predominant basal body phenotypes: misorientation of newly assembled basal bodies and stability defects. The results also show that the two domains of Cen1 are able to bind Ca(2+) and that perturbation of Ca(2+) binding affects Cen1 function. In all, the data suggest that the two domains of Cen1 have distinct functions.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Tetrahymena thermophila/metabolismo , Alelos , Calcio/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Centrómero/genética , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Cilios/genética , Cilios/metabolismo , Mutación , Fenotipo , Unión Proteica , Estructura Terciaria de Proteína , Tetrahymena thermophila/citología , Tetrahymena thermophila/genética
11.
Methods Cell Biol ; 96: 117-41, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20869521

RESUMEN

Basal bodies and centrioles are highly ordered, microtubule-based organelles involved in the organization of the mitotic spindle and the formation of cilia and flagella. The ciliate Tetrahymena thermophila has more than 700 basal bodies per cell, making it an excellent choice for the study of the structure, function, and assembly of basal bodies. Here, we describe methods for cryofixation of Tetrahymena by high-pressure freezing and freeze-substitution (HPF/FS) for the analysis of basal body structure with advanced electron microscopy techniques. Electron tomography of semi-thick HPF/FS sections was used to generate high-resolution three-dimensional images and models that reveal the intricate structure of basal bodies and associated structures. Immuno-labeling of thin sections from the same HPF/FS samples was used to localize proteins to specific domains within the basal body. To further optimize this model system, we used cell cycle synchronization to increase the abundance of assembling basal bodies. The Tetrahymena genome has been sequenced and techniques for genetic manipulations, such as construction of gene deletion strains, inducible expression and epitope tagging of proteins are now available. These advances have helped to make Tetrahymena a tractable experimental model system. Collectively, these methods facilitate studies of the mechanism of basal body assembly, the functions of basal body constituents and the cytological role of the basal body as a whole.


Asunto(s)
Centriolos/ultraestructura , Tomografía con Microscopio Electrónico/métodos , Inmunohistoquímica/métodos , Tetrahymena thermophila/ultraestructura , Tomografía con Microscopio Electrónico/instrumentación , Substitución por Congelación/métodos , Imagenología Tridimensional/métodos , Microscopía Electrónica/instrumentación , Microscopía Electrónica/métodos
12.
Methods Mol Biol ; 586: 227-41, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19768433

RESUMEN

Preservation of Tetrahymena thermophila basal body ultrastructure for visualization by transmission electron microscopy is improved by a combination of high pressure freezing (HPF) and freeze substitution (FS). These methods also reliably retain the antigenicity of cellular proteins for immuno-electron microscopy, which enables the precise localization of green fluorescent protein (GFP)-tagged and native basal body proteins. The plastic-embedded samples generated by these methods take full advantage of higher resolution visualization techniques such as electron tomography. We describe protocols for cryofixation, FS, immunolabeling, and staining. Suggestions for trouble shooting and evaluation of specimen quality are discussed. In combination with identification and manipulation of a rapidly expanding list of basal body-associated gene products, these methods are being used to increase our understanding of basal body composition, assembly, and function.


Asunto(s)
Centriolos/metabolismo , Microscopía Electrónica/métodos , Microscopía Inmunoelectrónica/métodos , Tetrahymena thermophila/metabolismo , Animales , Centriolos/ultraestructura , Criopreservación/métodos , Tomografía con Microscopio Electrónico/métodos , Substitución por Congelación , Congelación , Proteínas Fluorescentes Verdes/metabolismo , Presión , Tetrahymena thermophila/ultraestructura , Adhesión del Tejido/métodos
13.
Mol Biol Cell ; 20(6): 1865-77, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19158390

RESUMEN

Cilia and flagella are structurally and functionally conserved organelles present in basal as well as higher eukaryotes. The assembly of cilia requires a microtubule based scaffold called a basal body. The ninefold symmetry characteristic of basal bodies and the structurally similar centriole is organized around a hub and spoke structure termed the cartwheel. To date, SAS-6 is one of the two clearly conserved components of the cartwheel. In some organisms, overexpression of SAS-6 causes the formation of supernumerary centrioles. We questioned whether the centriole assembly initiation capacity of SAS-6 is separate from or directly related to its structural role at the cartwheel. To address this question we used Tetrahymena thermophila, which expresses two SAS-6 homologues, TtSAS6a and TtSAS6b. Cells lacking either TtSAS6a or TtSAS6b are defective in new basal body assembly. TtSas6a localizes to all basal bodies equally, whereas TtSas6b is enriched at unciliated and assembling basal bodies. Interestingly, overexpression of TtSAS6b but not TtSAS6a, led to the assembly of clusters of new basal bodies in abnormal locations. Our data suggest a model where TtSAS6a and TtSAS6b have diverged such that TtSAS6a acts as a structural component of basal bodies, whereas TtSAS6b influences the location of new basal body assembly.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Tetrahymena thermophila/crecimiento & desarrollo , Tetrahymena thermophila/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Cilios/metabolismo , Cilios/ultraestructura , Clonación Molecular , Expresión Génica , Humanos , Filogenia , Tetrahymena thermophila/genética , Tetrahymena thermophila/ultraestructura
14.
Cell ; 135(5): 894-906, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19041752

RESUMEN

During mitosis, sister chromatids congress to the spindle equator and are subsequently segregated via attachment to dynamic kinetochore microtubule (kMT) plus ends. A major question is how kMT plus-end assembly is spatially regulated to achieve chromosome congression. Here we find in budding yeast that the widely conserved kinesin-5 sliding motor proteins, Cin8p and Kip1p, mediate chromosome congression by suppressing kMT plus-end assembly of longer kMTs. Of the two, Cin8p is the major effector and its activity requires a functional motor domain. In contrast, the depolymerizing kinesin-8 motor Kip3p plays a minor role in spatial regulation of yeast kMT assembly. Our analysis identified a model where kinesin-5 motors bind to kMTs, move to kMT plus ends, and upon arrival at a growing plus end promote net kMT plus-end disassembly. In conclusion, we find that length-dependent control of net kMT assembly by kinesin-5 motors yields a simple and stable self-organizing mechanism for chromosome congression.


Asunto(s)
Cinesinas/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromosomas Fúngicos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Motoras Moleculares , Mutación , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
15.
J Cell Biol ; 178(6): 905-12, 2007 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-17785518

RESUMEN

Basal bodies organize the nine doublet microtubules found in cilia. Cilia are required for a variety of cellular functions, including motility and sensing stimuli. Understanding this biochemically complex organelle requires an inventory of the molecular components and the contribution each makes to the overall structure. We define a basal body proteome and determine the specific localization of basal body components in the ciliated protozoan Tetrahymena thermophila. Using a biochemical, bioinformatic, and genetic approach, we identify 97 known and candidate basal body proteins. 24 novel T. thermophila basal body proteins were identified, 19 of which were localized to the ultrastructural level, as seen by immunoelectron microscopy. Importantly, we find proteins from several structural domains within the basal body, allowing us to reveal how each component contributes to the overall organization. Thus, we present a high resolution localization map of basal body structure highlighting important new components for future functional studies.


Asunto(s)
Centriolos/metabolismo , Proteínas Protozoarias/metabolismo , Tetrahymena thermophila/metabolismo , Animales , Centriolos/ultraestructura , Cilios/metabolismo , Cilios/ultraestructura , Microscopía Electrónica de Transmisión , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Proteoma/metabolismo , Tetrahymena thermophila/ultraestructura
16.
Science ; 313(5787): 680-4, 2006 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-16825537

RESUMEN

The spindle checkpoint delays cell cycle progression until microtubules attach each pair of sister chromosomes to opposite poles of the mitotic spindle. Following sister chromatid separation, however, the checkpoint ignores chromosomes whose kinetochores are attached to only one spindle pole, a state that activates the checkpoint prior to metaphase. We demonstrate that, in budding yeast, mutual inhibition between the anaphase-promoting complex (APC) and Mps1, an essential component of the checkpoint, leads to sustained inactivation of the spindle checkpoint. Mps1 protein abundance decreases in anaphase, and Mps1 is a target of the APC. Furthermore, expression of Mps1 in anaphase, or repression of the APC in anaphase, reactivates the spindle checkpoint. This APC-Mps1 feedback circuit allows cells to irreversibly inactivate the checkpoint during anaphase.


Asunto(s)
Anafase/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Huso Acromático/fisiología , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Cromosomas Fúngicos/fisiología , Retroalimentación Fisiológica , Proteínas de Unión al GTP/metabolismo , Cinetocoros/fisiología , Proteínas Mad2 , Mitosis , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Securina
17.
J Cell Biol ; 156(3): 453-65, 2002 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-11827982

RESUMEN

Saccharomyces cerevisiae MPS1 encodes an essential protein kinase that has roles in spindle pole body (SPB) duplication and the spindle checkpoint. Previously characterized MPS1 mutants fail in both functions, leading to aberrant DNA segregation with lethal consequences. Here, we report the identification of a unique conditional allele, mps1-8, that is defective in SPB duplication but not the spindle checkpoint. The mutations in mps1-8 are in the noncatalytic region of MPS1, and analysis of the mutant protein indicates that Mps1-8p has wild-type kinase activity in vitro. A screen for dosage suppressors of the mps1-8 conditional growth phenotype identified the gene encoding the integral SPB component SPC42. Additional analysis revealed that mps1-8 exhibits synthetic growth defects when combined with certain mutant alleles of SPC42. An epitope-tagged version of Mps1p (Mps1p-myc) localizes to SPBs and kinetochores by immunofluorescence microscopy and immuno-EM analysis. This is consistent with the physical interaction we detect between Mps1p and Spc42p by coimmunoprecipitation. Spc42p is a substrate for Mps1p phosphorylation in vitro, and Spc42p phosphorylation is dependent on Mps1p in vivo. Finally, Spc42p assembly is abnormal in a mps1-1 mutant strain. We conclude that Mps1p regulates assembly of the integral SPB component Spc42p during SPB duplication.


Asunto(s)
Centrosoma/enzimología , Proteínas del Citoesqueleto/metabolismo , Mitosis/genética , Mutación/fisiología , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Huso Acromático/enzimología , Alelos , Secuencia de Aminoácidos/genética , Centrosoma/ultraestructura , Proteínas del Citoesqueleto/genética , Técnica del Anticuerpo Fluorescente , Dosificación de Gen , Genes cdc/fisiología , Cinetocoros/enzimología , Cinetocoros/ultraestructura , Microscopía Electrónica , Fosfoproteínas/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína/genética , Proteínas Tirosina Quinasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Huso Acromático/genética , Huso Acromático/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...