Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gels ; 10(2)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38391452

RESUMEN

Gels are attracting materials for energy storage technologies. The strategic development of hydrogels with enhanced physicochemical properties, such as superior mechanical strength, flexibility, and charge transport capabilities, introduces novel prospects for advancing next-generation batteries, fuel cells, and supercapacitors. Through a refined comprehension of gelation chemistry, researchers have achieved notable progress in fabricating hydrogels endowed with stimuli-responsive, self-healing, and highly stretchable characteristics. This mini-review delineates the integration of hydrogels into batteries, fuel cells, and supercapacitors, showcasing compelling instances that underscore the versatility of hydrogels, including tailorable architectures, conductive nanostructures, 3D frameworks, and multifunctionalities. The ongoing application of creative and combinatorial approaches in functional hydrogel design is poised to yield materials with immense potential within the domain of energy storage.

2.
Nanomaterials (Basel) ; 13(24)2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38133057

RESUMEN

Water electrolysis is a highly efficient route to produce ideally clean H2 fuel with excellent energy conversion efficiency and high gravimetric energy density, without producing carbon traces, unlike steam methane reforming, and it resolves the issues of environmental contamination via replacing the conventional fossil fuel. Particular importance lies in the advancement of highly effective non-precious catalysts for the oxygen evolution reaction (OER). The electrocatalytic activity of an active catalyst mainly depends on the material conductivity, accessible catalytically active sites, and intrinsic OER reaction kinetics, which can be tuned via introducing N heteroatoms in the catalyst structure. Herein, the efficacious nitrogenation of CuS was accomplished, synthesized using a hydrothermal procedure, and characterized for its electrocatalytic activity towards OER. The nitrogen-doped CuO@CuS (N,CuO@CuS) electrocatalyst exhibited superior OER activity compared to pristine CuS (268 and 602 mV), achieving a low overpotential of 240 and 392 mV at a current density of 10 and 100 mA/cm2, respectively, ascribed to the favorable electronic structural modification triggered by nitrogen incorporation. The N,CuO@CuS also exhibits excellent endurance under varied current rates and a static potential response over 25 h with stability measured at 10 and 100 mA/cm2.

3.
Inorg Chem ; 62(46): 19025-19032, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37921514

RESUMEN

The limited Mn2+ doping that occurs in lead halide perovskites has been widely described, while the Pb2+ doping that occurs in Mn2+ halide perovskites has not been studied well. Generally, a large amount of doping of Mn2+ in lead halide perovskite degrades the perovskite structure; eventually, high orange luminescence of Mn2+ dopant has not been achieved. In our present study, we followed a reverse strategy, i.e., Pb2+ doping in Mn2+ halide perovskites, to increase the amount of Mn2+ in halide perovskites through the high-energy ball milling method. This strategy yields bright-fluorescence orange light-emitting Mn2+-doped perovskite with a Mn/Pb ratio of 95%, which is the highest among Mn2+-doped perovskites. Zero-dimensional (0D) Mn2+ perovskites and two-dimensional (2D) Pb2+-doped Mn2+-based perovskites were successfully synthesized and characterized. During the mechanochemical engineering, Pb2+ ions partially occupy the site of Mn2+ ions and act as a luminescence activator. Mn2+-based 2D perovskites with the proper amounts of Pb2+ ions as dopant ions and phenylethylammonium (PEA+) as dielectric organic cations show enhanced stability in water. The dual-emissive properties of these 2D-Pb2+-doped Mn2+-based perovskites were also investigated by using single-particle imaging fluorescence. We believe that these findings will pave the way for designing eco-friendly dimension and bandgap tunable layered perovskites.

4.
Nanomaterials (Basel) ; 13(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686966

RESUMEN

Solvent-free mechanochemical synthesis of efficient and low-cost double perovskite (DP), like a cage of Prussian blue (PB) and PB analogs (PBAs), is a promising approach for different applications such as chemical sensing, energy storage, and conversion. Although the solvent-free mechanochemical grinding approach has been extensively used to create halide-based perovskites, no such reports have been made for cyanide-based double perovskites. Herein, an innovative solvent-free mechanochemical synthetic strategy is demonstrated for synthesizing Fe4[Fe(CN)6]3, Co3[Fe(CN)6]2, and Ni2[Fe(CN)6], where defect sites such as carbon-nitrogen vacancies are inherently introduced during the synthesis. Among all the synthesized PB analogs, the Ni analog manifests a considerable electrocatalytic oxygen evolution reaction (OER) with a low overpotential of 288 mV to obtain the current benchmark density of 20 mA cm-2. We hypothesize that incorporating defects, such as carbon-nitrogen vacancies, and synergistic effects contribute to high catalytic activity. Our findings pave the way for an easy and inexpensive large-scale production of earth-abundant non-toxic electrocatalysts with vacancy-mediated defects for oxygen evolution reaction.

5.
Nanomaterials (Basel) ; 13(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37630914

RESUMEN

Designing efficient electrocatalytic systems through facile synthesis remains a formidable task. To address this issue, this paper presents the design of a combination material comprising two transition metal oxides (copper oxide and manganese oxide (CuO/MnO2)), synthesized using a conventional microwave technique to efficiently engage as an active oxygen evolution reaction (OER) catalyst. The structural and morphological properties of the composite were confirmed by the aid of X-ray diffraction (XRD) studies, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and energy-dispersive spectrometry (EDS). FESEM clearly indicated well-aligned interlacing of CuO with MnO2. The OER performance was carried out in 1 M KOH. The assembled CuO/MnO2 delivered a benchmark current density (j = 10 mA cm-2) at a minimal overpotential (η = 294 mV), while pristine CuO required a high η (316 mV). Additionally, the CuO/MnO2 electrocatalyst exhibited stability for more than 15 h. These enhanced electrochemical performances were attributed to the large volume and expanded diameter of the pores, which offer ample surface area for catalytic reactions to boost OER. Furthermore, the rate kinetics of the OER are favored in composite due to low Tafel slope (77 mV/dec) compared to CuO (80 mV/dec).

6.
J Evol Biol ; 36(4): 730-737, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36946997

RESUMEN

Sexual selection is a major force influencing the evolution of sexually reproducing species. Environmental factors such as larval density can manipulate adult condition and influence the direction and strength of sexual selection. While most studies on the influence of larval crowding on sexual selection are either correlational or single-generation manipulations, it is unclear how evolution under chronic larval crowding affects sexual selection. To answer this, we measured the strength of sexual selection on male and female Drosophila melanogaster that had evolved under chronic larval crowding for over 250 generations in the laboratory, along with their controls which had never experienced crowding, in a common garden high-density environment. We measured selection coefficients on male mating success and sex-specific reproductive success, as separate estimates allowed dissection of sex-specific effects. We show that experimental evolution under chronic larval crowding decreases the strength of sexual and fecundity selection in males but not in females, relative to populations experiencing crowding for the first time. The effect of larval crowding in reducing reproductive success is almost twice in females than in males. Our study highlights the importance of studying how evolution in a novel, stressful environment can shape adult fitness in organisms.


Asunto(s)
Adaptación Fisiológica , Drosophila melanogaster , Animales , Femenino , Masculino , Drosophila melanogaster/genética , Larva , Aclimatación , Fertilidad , Conducta Sexual Animal , Evolución Biológica
7.
Front Bioeng Biotechnol ; 11: 1323249, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38260746

RESUMEN

Over the last decade there has been a huge increase in the green synthesis of nanoparticles. Moreover, there is a continuous increase in harnessing the potential of microorganisms for the development of efficient and biocompatible nanoparticles around the globe. In the present research work, investigators have synthesized TiO2 NPs by harnessing the potential of Bacillus subtilis MTCC 8322 (Gram-positive) bacteria. The formation and confirmation of the TiO2 NPs synthesized by bacteria were carried out by using UV-Vis spectroscopy, Fourier transforms infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDX/EDS). The size of the synthesized TiO2 NPs was 80-120 nm which was spherical to irregular in shape as revealed by SEM. FTIR showed the characteristic bands of Ti-O in the range of 400-550 cm-1 and 924 cm-1 while the band at 2930 cm-1 confirmed the association of bacterial biomolecules with the synthesized TiO2 NPs. XRD showed two major peaks; 27.5° (rutile phase) and 45.6° (anatase phase) for the synthesized TiO2 NPs. Finally, the potential of the synthesized TiO2 NPs was assessed as an antibacterial agent and photocatalyst. The remediation of Methylene blue (MB) and Orange G (OG) dyes was carried out under UV- light and visible light for a contact time of 150-240 min respectively. The removal efficiency for 100 ppm MB dye was 25.75% and for OG dye was 72.24% under UV light, while in visible light, the maximum removal percentage for MB and OG dye was 98.85% and 80.43% respectively at 90 min. Moreover, a kinetic study and adsorption isotherm study were carried out for the removal of both dyes, where the pseudo-first-order for MB dye is 263.269 and 475554.176 mg/g for OG dye. The pseudo-second-order kinetics for MB and OG dye were 188.679 and 1666.667 mg/g respectively. In addition to this, the antibacterial activity of TiO2 NPs was assessed against Bacillus subtilis MTCC 8322 (Gram-positive) and Escherichia coli MTCC 8933 (Gram-negative) where the maximum zone of inhibition in Bacillus subtilis MTCC 8322 was about 12 mm, and for E. coli 16 mm.

8.
Comput Intell Neurosci ; 2022: 7097044, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965780

RESUMEN

The unprecedented Corona Virus Disease (COVID-19) pandemic has put the world in peril and shifted global landscape in unanticipated ways. The SARSCoV2 virus, which caused the COVID-19 outbreak, first appeared in Wuhan, Hubei Province, China, in December 2019 and quickly spread around the world. This pandemic is not only a global health crisis, but it has caused the major global economic depression. As soon as the virus spread, stock market prices plummeted and volatility increased. Predicting the market during this outbreak has been of substantial importance and is the primary motivation to carry out this work. Given the nonlinearity and dynamic nature of stock data, the prediction of stock market is a challenging task. The machine learning models have proven to be a good choice for the development of effective and efficient prediction systems. In recent years, the application of hyperparameter optimization techniques for the development of highly accurate models has increased significantly. In this study, a customized neural network model is proposed and the power of hyperparameter optimization in modelling stock index prices is explored. A novel dataset is generated using nine standard technical indicators and COVID-19 data. In addition, the primary focus is on the importance of selection of optimal features and their preprocessing. The utilization of multiple feature ranking techniques combined with extensive hyperparameter optimization procedures is comprehensive for the prediction of stock index prices. Moreover, the model is evaluated by comparing it with other models, and results indicate that the proposed model outperforms other models. Given the detailed design methodology, preprocessing, exploratory feature analysis, and hyperparameter optimization procedures, this work gives a significant contribution to stock analysis research community during this pandemic.


Asunto(s)
COVID-19 , Modelos Económicos , COVID-19/epidemiología , Comercio , Atención a la Salud , Humanos , Redes Neurales de la Computación , ARN Viral , SARS-CoV-2
9.
Proc Biol Sci ; 289(1974): 20220532, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35506222

RESUMEN

Rapid exaggeration of host and pathogen traits via arms race dynamics is one possible outcome of host-pathogen coevolution. However, the exaggerated traits are expected to incur costs in terms of resource investment in other life-history traits. The current study investigated the costs associated with evolved traits in a host-pathogen coevolution system. We used the Drosophila melanogaster (host)-Pseudomonas entomophila (pathogen) system to experimentally derive two selection regimes, one where the host and pathogen both coevolved, and the other, where only the host evolved against a non-evolving pathogen. After 17 generations of selection, we found that hosts from both selected populations had better post-infection survivorship than controls. Even though the coevolving populations tended to have better survivorship post-infection, we found no clear evidence that the two selection regimes were significantly different from each other. There was weak evidence for the coevolving pathogens being more virulent than the ancestral pathogen. We found no major cost of increased post-infection survivorship. The costs were not different between the coevolving hosts and the hosts evolving against a non-evolving pathogen. We found no evolved costs in the coevolving pathogens. Thus, our results suggest that increased host immunity and pathogen virulence may not be costly.


Asunto(s)
Drosophila melanogaster , Supervivencia , Animales , Pseudomonas , Sobrevida
10.
Nanomaterials (Basel) ; 13(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36615919

RESUMEN

Cation-disordered rocksalt (DRX) cathodes have been viewed as next-generation high-energy density materials surpassing conventional layered cathodes for lithium-ion battery (LIB) technology. Utilizing the opportunity of a better cation mixing facility in DRX, we synthesize Na-doped DRX as an efficient electrocatalyst toward oxygen evolution reaction (OER). This novel OER electrocatalyst generates a current density of 10 mA cm−2 at an overpotential (η) of 270 mV, Tafel slope of 67.5 mV dec−1, and long-term stability >5.5 days' superior to benchmark IrO2 (η = 330 mV with Tafel slope = 74.8 mV dec−1). This superior electrochemical behavior is well supported by experiment and sparse Gaussian process potential (SGPP) machine learning-based search for minimum energy structure. Moreover, as oxygen binding energy (OBE) on the surface closely relates to OER activity, our density functional theory (DFT) calculations reveal that Na-doping assists in facile O2 evolution (OBE = 5.45 eV) compared with pristine-DRX (6.51 eV).

11.
Evolution ; 75(11): 2830-2841, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34617270

RESUMEN

Nutrient limitation during development can restrict the ability of adults to invest in costly fitness traits, and genotypes can vary in their sensitivity to developmental nutrition. However, little is known about how genotype and nutrition affect male ability to maintain ejaculate allocation and achieve fertilization across successive matings. Using 17 isogenic lines of Drosophila melanogaster, we investigated how variation in developmental nutrition affects males' abilities to mate, transfer sperm, and sire offspring when presented with successive virgin females. We found that, with each successive mating, males required longer to initiate copulation, transferred fewer sperm, and sired fewer offspring. Males reared on a low-nutrient diet transferred fewer sperm than those reared on nutritionally superior diets, but the rate at which males depleted their sperm, as well as their reproductive performance, was largely independent of diet. Genotype and the genotype × diet interaction explained little of the variation in these male reproductive traits. Our results show that sperm depletion can occur rapidly and impose substantial fitness costs for D. melanogaster males across multiple genotypes and developmental environments.


Asunto(s)
Drosophila melanogaster , Espermatozoides , Animales , Drosophila melanogaster/genética , Femenino , Genotipo , Masculino , Fenotipo , Reproducción
12.
Artículo en Inglés | MEDLINE | ID: mdl-34152429

RESUMEN

To understand how insect pollinators find flowers against complex backgrounds in diverse natural habitats, it is required to accurately estimate the thresholds for target detection. Detection thresholds for single targets vary between bee species and have been estimated in the Western honeybee, a species of bumblebee and in a stingless bee species. We estimated the angular range of detection for coloured targets in the Asian honeybee Apis cerana. Using a Y-maze experimental set up, we show that targets that provided both chromatic and green receptor contrast were detected at a minimum visual angle of 7.7°, while targets with only chromatic contrast were detected at a minimum angle of 13.2°. Our results thus provide a robust foundation for future studies on the visual ecology of bees in a comparative interspecific framework.


Asunto(s)
Abejas/fisiología , Percepción Visual/fisiología , Animales
13.
Small ; 17(18): e2005605, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33783095

RESUMEN

The rational design of bifunctional electrocatalyst through simple synthesis with high activity remains a challenging task. Herein, Na/Al codoped Li-excess Li-Ru-Ni-O layered electrodes are demonstrated with defects/dislocations as an efficient bifunctional electrocatalyst toward lithium-ion battery (LIB) and oxygen evolution reaction (OER). Toward LIB cathode, specific capacity of 173 mAh g-1 (0.2C-rate), cyclability (>95.0%), high Columbic efficiency (99.2%), and energy efficiency (90.7%) are achieved. The codoped electrocatalyst has exhibited OER activity at a low onset potential (270 mV@10 mA cm-2 ), with a Tafel slope 69.3 mV dec-1 , and long-term stability over 36 h superior to the undoped and many other OER electrocatalysts including the benchmark IrO2 . The concurrent doping resides in the crystal lattice (where Na shows the pillaring effect to improve facile Li diffusion), Al improves the stabilization of the layered structure, and defective structures provide abundant active sites to accelerate OER reactions.

14.
Evolution ; 75(2): 414-426, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33319380

RESUMEN

Post-copulatory sexual selection (PSS) is an important selective force that determines fitness in polyandrous species. PSS can be intense in some cases and can drive the evolution of remarkable ejaculate properties. In males, investment in ejaculate plays an important role in the outcome of PSS. Thus, males are expected to adaptively tailor their ejaculate according to the perceived competition in their vicinity. Plastic responses in ejaculate investment to variation in intrasexual competition are disparate and widespread in males. We investigated the evolution of plasticity in reproductive traits using Drosophila melanogaster populations evolving for more than 150 generations under male- or female-biased sex ratios. When exposed to different numbers of competitors early in their life, males from these two regimes responded differently in terms of their copulation duration and sperm competitive ability. In addition, the effect of this early life experience wore off at different rates in males of male-biased and female-biased regimes with increasing time from the removal of competitive cues. Furthermore, our study finds that males change their reproductive strategies depending upon the identity of rival males. Together, our results provide evidence of the evolution of male reproductive investment that depends on socio-sexual cues experienced early in life.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Drosophila melanogaster , Conducta Sexual Animal , Selección Sexual , Animales , Femenino , Masculino , Reproducción , Razón de Masculinidad
15.
Nat Commun ; 10(1): 5195, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729366

RESUMEN

For efficient water splitting, it is essential to develop inexpensive and super-efficient electrocatalysts for the oxygen evolution reaction (OER). Herein, we report a phosphate-based electrocatalyst [Fe3Co(PO4)4@reduced-graphene-oxide(rGO)] showing outstanding OER performance (much higher than state-of-the-art Ir/C catalysts), the design of which was aided by first-principles calculations. This electrocatalyst displays low overpotential (237 mV at high current density 100 mA cm-2 in 1 M KOH), high turnover frequency (TOF: 0.54 s-1), high Faradaic efficiency (98%), and long-term durability. Its remarkable performance is ascribed to the optimal free energy for OER at Fe sites and efficient mass/charge transfer. When a Fe3Co(PO4)4@rGO anodic electrode is integrated with a Pt/C cathodic electrode, the electrolyzer requires only 1.45 V to achieve 10 mA cm-2 for whole water splitting in 1 M KOH (1.39 V in 6 M KOH), which is much smaller than commercial Ir-C//Pt-C electrocatalysts. This cost-effective powerful oxygen production material with carbon-supporting substrates offers great promise for water splitting.

16.
ACS Appl Mater Interfaces ; 6(16): 13866-73, 2014 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-25089579

RESUMEN

Peroxidase, such as horseradish peroxidase (HRP), conjugated to antibodies are routinely used for the detection of proteins via an ELISA type assay in which a critical step is the catalytic signal amplification by the enzyme to generate a detectable signal. Synthesis of functional mimics of peroxidase enzyme that display catalytic activity which far exceeds the native enzyme is extremely important for the precise and accurate determination of very low quantities of proteins (fM and lower) that is necessary for early clinical diagnosis. Despite great advancements, analyzing proteins of very low abundance colorimetrically, a method that is most sought after since it requires no equipment for the analysis, still faces great challenges. Most reported HRP mimics that show catalytic activity greater than native enzyme (∼10-fold) are based on metal/metal-oxide nanoparticles such as Fe3O4. In this paper, we describe a second generation hybrid material developed by us in which approximately 25,000 alkyne tagged biuret modified Fe-tetraamido macrocyclic ligand (Fe-TAML), a very powerful small molecule synthetic HRP mimic, was covalently attached inside a 40 nm mesoporous silica nanoparticle (MSN). Biuret-modified Fe-TAMLs represent one of the best small molecule functional mimics of the enzyme HRP with reaction rates in water close to the native enzyme and operational stability (pH, ionic strength) far exceeding the natural enzyme. The catalytic activity of this hybrid material is around 1000-fold higher than that of natural HRP and 100-fold higher than that of most metal/metal oxide nanoparticle based HRP mimics reported to date. We also show that using antibody conjugates of this hybrid material it is possible to detect and, most importantly, quantify femtomolar quantities of proteins colorimetrically in an ELISA type assay. This represents at least 10-fold higher sensitivity than other colorimetric protein assays that have been reported using metal/metal oxide nanoparticles as HRP mimic. Using a human IgG expressing cell line, we were able to demonstrate that the protein of interest human IgG could be detected from a mixture of interfering proteins in our assay.


Asunto(s)
Nanopartículas/química , Peroxidasa/análisis , Dióxido de Silicio/química , Catálisis , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Peroxidasa de Rábano Silvestre/análisis , Peroxidasa de Rábano Silvestre/química , Humanos , Peroxidasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...