Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6840, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514633

RESUMEN

In the modern era, intensive agricultural practices such as agrochemicals are applied in excessive amounts to enhance agricultural production. However, imbalanced adoption of these chemicals has arisen in the dwindling of agriculture factor productivity and soil quality. To maintain soil fertility and production, these chemical fertilizers must be supplemented with organic inputs. Keeping this in the backdrop, a research trail was established during 2018-19 and 2019-20 years at Research Farm of Agriculture University, Kota, India. The treatment setup was comprised of 5 treatment modules viz., conservation tillage + organic management (CAOM), conservation tillage + chemical management (CACM), conventional tillage + chemical management (CTCM), conventional tillage + organic management (CTOM) and the package of practices (PoPs) with four replications. Results indicated that the highest organic carbon (0.68%), bacterial (29.11 × 107 cfu g-1), fungal (4.77 × 104 cfu g-1), actinomycetes populations (5.67 × 104 cfu g-1), acid phosphatase (44.1 µg g-1 h-1), urease (45.3 µg g-1 h-1) and dehydrogenase (23.3 µg triphenylformazan [TPF] g-1 h-1) activity in soil were found in the treatment of conservation organic system during both the years of study at each soil depth. In contrast to other parameters, the highest system productivity was observed with conservation chemical crop management approaches, with a soybean equivalent yield of 4615 kg ha-1 in a soybean-wheat system of production. Furthermore, the soil quality index (SQI) significantly varied from the lowest score (0.30) at 45-60 cm layer of soil in the package of practices to the highest score (0.92) at 0-15 cm layer of soil with regards to the conservation organic which shows, 206.67 percent enhancement through the soil profile of various crop management practices. The SQI variation from 0-15 to 45-60 cm soil depth was 130.0, 81.08, 60.0, 175.0 and 83.33 percent, respectively, for CAOM, CACM, CTCM, CTOM and PoPs. Amongst, different systems, the highest mean performance was noticed under the conservation organic systems for physical and biological properties. Hence, in line with the salient outcome, we may propose that the conservation chemical system needs to be followed to improve crop productivity, whereas, conservation organic seems a good option for soil health with long-term viability.


Asunto(s)
Glycine max , Suelo , Humanos , Suelo/química , Triticum , Productos Agrícolas , Agricultura/métodos
2.
PLoS One ; 18(1): e0279434, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36662725

RESUMEN

Adoption of conservation agriculture (CA) is very slow due to weed infestations. The application of herbicides is the only viable option to deal with problem of weed management to adhere with basic principles of CA. A field experiment was carried out for three years to evaluate the expediency of different herbicides and their sequential applications under CA. In this study, seven treatments comprised of either alone or sequential application of pre-emergence (PE) and post-emergence (PoE) herbicides, hand weeding and weedy check were tested in soybean. Result indicated that sequential application of glyphosate at 1 kg ai ha-1 + pendimethalin at 1 kg ai ha-1as PE followed by PoE application of imazethapyr at 100 g ai ha-1 at 30 days after sowing (DAS) proved to be the best economical option in terms of plant growth parameters, crop biomass, seed yield, weed index and carbon and nutrient recycling. Pearson's correlation coefficients matrix revealed that grain yield was significantly (P<0.0001) related to weed density at harvest (r = -0.84), (WDH) (r = -0.63), weed dry biomass (WDB) (r = -0.52), weed nitrogen (N), phosphorus (P) and potassium (K) uptake (r = -0.56, r = -0.59 and r = -0.66), respectively and weed index (WI) (r = -0.96). The bivariate linear regression study of grain yield on weed control efficiency (WCI) biomass, N, P and K uptake by grain showed a clear significant (P<0.0001) dependence with R2 value of 0.53, 0.99, 0.95 and 0.98, respectively. The fitted stepwise multiple regression model also revealed that N and P uptake in grain, weed density at 20 DAS and K uptake in weed were actual predictor for grain yield. We concluded that, effective and economical weed control under CA in soybean can be achieved through sequential application of glyphosate along with pendimethalin at 1 kg ai ha-1 each PE followed by PoE use of imazethapyr at 100 g ai ha-1 at 30 DAS.


Asunto(s)
Herbicidas , Glycine max , Control de Malezas , Agricultura , Grano Comestible
3.
PLoS One ; 17(2): e0262652, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35176054

RESUMEN

Present investigation was conducted at the Research Farm of Indian Institute of Soil Science, Bhopal during 2017-18 and 2018-19 to study the performance of chickpea crop under various nutrient management modules in a Vertisol. The field experiment was set up in a randomized block design with three replications of twelve different INM modules. During the rabi seasons of 2017-18 and 2018-19, the chickpea (cv. JG-315) was grown with a set of treatments. The crop's performance was evaluated in terms of growth, yield (grain and straw), nutritional content, and nutrient uptake under different treatments. At crop harvest, the physic-chemical characteristics of the soil were also evaluated. Finally, the relationship between the numerous examined parameters was determined. The results showed that integrated nutrient management modules had a positive impact on chickpea crop performance and productivity when compared to using only inorganic fertilizer. The INM modules dramatically increased soil organic carbon and improved soil health in terms of physical and chemical qualities, in addition to higher crop performance. Among the various modules, (1) application of 75% STCR dose + FYM @ 5t ha-1to maize followed by 100% P only to chickpea and (2) application of FYM @ 20t ha-1to maize followed by FYM @ 5t ha-1 to chickpea increased the productivity and nutrient uptake in chickpea, improved soil physico-chemical properties and reflected as viable technique in improving soil nutrient availability on sustainable basis.


Asunto(s)
Carbono/química , Cicer/crecimiento & desarrollo , Fertilizantes/análisis , Nutrientes/análisis , Estaciones del Año , Suelo/química , Zea mays/crecimiento & desarrollo , Cicer/efectos de los fármacos , India , Nutrientes/administración & dosificación , Zea mays/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...