Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597889

RESUMEN

BACKGROUND: The continuous cultivation of rice-wheat in the same field is a key element of double-cropping systems in the Indo-Gangetic plains. Yields of such cropping systems are increasingly challenged as climate change drives increases in temperature, terminal stress and uneven rainfall, delaying rice harvesting and subsequently delaying sowing of wheat. In this paper, we evaluate the optimum sowing dates to achieve high grain yield and quality of wheat cultivars in northwest India. Three cultivars of wheat, HD-2967, HD-3086 and PBW-723, were sown on three different dates at the research farm of ICAR-IARI, New Delhi, to generate different weather conditions at different phenological stages. Different biophysical attributes, photosynthetic rate, stomatal conductance and transpiration rate, were measured at different phenological stages. Yield and grain quality parameters such as protein, starch, amylopectin, amylose and gluten were measured in different cultivars sown on different dates. RESULTS: Biophysical parameters were found to be higher in timely sown crops followed by late-sown and very late-sown crops. Further, the different sowing dates had a significant (P < 0.05) impact on the grain quality parameters such as protein, starch, amylopectin, amylose and gluten content. Percentage increases in the value of starch and amylose content under timely sown were ~7% and 11.6%, ~5% and 8.4%, compared to the very late-sown treatment. In contrast, protein and amylopectin contents were found to increase by ~9.7% and 7.5%, ~13.8% and 16.6% under very late-sown treatment. CONCLUSION: High-temperature stress during the grain-filling periods significantly decreased the grain yield. Reduction in the grain yield was associated with a reduction in starch and amylose content in the grains. The protein content in the grains is less affected by terminal heat stress. Cultivar HD-3086 had higher growth, yield as well as quality parameters, compared to HD-2967 and PBW-723 in all treatments, hence could be adopted by farmers in northwest India. © 2024 Society of Chemical Industry.

2.
Environ Sci Pollut Res Int ; 30(45): 101343-101357, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37651010

RESUMEN

A greenhouse pot experiment was conducted with seven different levels of sludge (0, 5, 10, 20, 40, 80, 160 g kg-1) to assess the potential impact of sludge application on soybean (Glycine max (L.) Merr.) productivity, metal accumulation and translocation, and physico-chemical changes in acid and alkaline soils. The outcomes revealed that the application of sludge @ 5.0 to 160 g kg-1 resulted in a significant (p < 0.05) increase in seed and straw yield in both acid and alkaline soils compared to control. All the assessed heavy metals in soybean were within permissible ranges and did not exceed the phytotoxic limit, except for Fe, Zn, and Cu in the roots from the application of sewage sludge. The values of bioaccumulation factor (BFroot/soil) and translocation factor i.e., TFstraw/root and TFseed/straw were < 1.0 for Ni, Pb and Cr. Overall, for all the sludge application doses the soil pH was observed to increase in the acid soil and decline in alkaline soil when compared to the control. All the investigated heavy metals (Fe, Mn, Zn, Cu, Ni, Cd, Pb, and Cr) in the different plant tissues (root, straw and seed) of soybean were correlated with the soil variables. The study finds that sludge can be a potential organic fertilizer and function as an eco-friendly technique for the recycling of nutrients in the soil while keeping a check on the heavy metals' availability to plants.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo , Aguas del Alcantarillado , Glycine max , Plomo , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Plantas
3.
PLoS One ; 18(5): e0284910, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37134101

RESUMEN

Most of the popular scion varieties of mango possess alternate/irregular bearing. There are many external and internal factors assigned, among them carbohydrate reserves, and nutrient content plays important roles in the floral induction process in many crop species. In addition to that rootstock can alter the carbohydrate reserve and nutrient acquisition of scion varieties in fruit crops. The present investigation was carried out to understand the effect of rootstocks on the physiochemical traits of leaf, and bud and nutrient content in regular and alternate bearing varieties of mango. The rootstock "Kurukkan" promoted starch content in leaves of both alternate bearing varieties 'Dashehari' (5.62 mg/g) and regular 'Amrapali' (5.49 mg/g) and encouraged higher protein content (6.71 mg/g) and C/N ratio (37.94) in buds of alternate bearing 'Dashehari'. While Olour rootstock upregulated the reducing sugar in leaves of 'Amrapali' (43.56 mg/g) and promoted K (1.34%) and B (78.58 ppm) content in reproductive buds of 'Dashehari'. Stomatal density in 'Dashehari' scion variety was found higher on Olour rootstock (700.40/mm 2), while the rootstock fails to modify stomatal density in the scion variety regular bearer 'Amrapali'. Further, a total of 30 carbohydrate metabolism-specific primers were designed and validated in 15 scion/rootstock combinations. A total of 33 alleles were amplified among carbohydrate metabolism-specific markers, which varied from 2 to 3 alleles with a mean of 2.53 per locus. Maximum and minimum PIC value was found for NMSPS10, and NMTPS9 primers (0.58). Cluster analysis revealed that scion grafted on Kurukkan rootstock clustered together except 'Pusa Arunima' on Olour rootstock. Our analysis revealed that Fe is the key component that is commonly expressed in both leaf and bud. Although Stomatal density (SD) and Intercellular CO2 Concentration (Ci) are more specific to leaf and Fe, B, and total sugar (TS) are abundant in buds. Based on the results it can be inferred that the physiochemical and nutrient responses of mango scion varieties are manipulated by the rootstock, hence, the scion-rootstock combination can be an important consideration in mango for selecting suitable rootstock for alternate/irregular bearer varieties.


Asunto(s)
Mangifera , Mangifera/genética , Metabolismo de los Hidratos de Carbono , Carbohidratos , Nutrientes , Azúcares
4.
Environ Sci Pollut Res Int ; 30(17): 50847-50863, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36807853

RESUMEN

Heavy metals in soil pose a serious threat through their toxic effect on the human food chain. Phytoremediation is a clean and green potentially cost-effective technology in remediating the heavy metal-contaminated soil. However, the efficiency of phytoextraction is very often limited by low phytoavailability of heavy metals in soil, slow growth, and small biomass production of hyper-accumulator plants. To solve these issues, accumulator plant(s) with high biomass production and amendment(s) which can solubilize metals in soil is required for better phytoextraction. A pot experiment was conducted to assess the efficiency of phytoextraction of sunflower, marigold, and spinach as affected by the incorporation of Sesbania (solubilizer) and addition of gypsum (solubilizer) in nickel (Ni)-, lead (Pb)-, and chromium (Cr)-contaminated soil. A fractionation study was conducted to study the bioavailability of the heavy metals in contaminated soil after growing the accumulator plants and as affected by using soil amendments (Sesbania and gypsum). Results showed that marigold was the most efficient among the three accumulator plants in phytoextraction of the heavy metals in the contaminated soil. Both sunflower and marigold were able to reduce the bioavailability of the heavy metals in the post-harvest soil, which was reflected in their (heavy metals) lower concentration in subsequently grown paddy crop (straw). The fractionation study revealed that carbonate and organically bound fractions of the heavy metals control the bioavailability of the heavy metals in the experimental soil. Both Sesbania and gypsum were not effective in solubilizing the heavy metals in the experimental soil. Therefore, the possibility of using Sesbania and gypsum for solubilizing heavy metals in contaminated soil is ruled out.


Asunto(s)
Calendula , Helianthus , Metales Pesados , Contaminantes del Suelo , Humanos , Níquel/análisis , Cromo/metabolismo , Spinacia oleracea/metabolismo , Plomo/metabolismo , Sulfato de Calcio , Metales Pesados/análisis , Biodegradación Ambiental , Suelo , Plantas/metabolismo , Calendula/metabolismo , Contaminantes del Suelo/análisis
5.
Food Funct ; 14(3): 1595-1607, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36683429

RESUMEN

Pearl millet (PM) is a nutri-cereal rich in various macro and micronutrients required for a balanced diet. Its grains have a unique phenolic and micronutrient composition; however, the lower bioaccessibility of nutrients and rancidity of flour during storage are the major constraints in its consumption and wide popularity. Here, to explore the effect of different thermal processing methods, i.e., hydrothermal (HT), microwave (MW), and infrared (IR) treatments, on the digestion of starch, phenolics, and microelements (Fe and Zn), an in vitro digestion model consisting of oral, gastric and intestinal digestion was applied to PM rotis. The hydrothermally treated PM roti was promising as it showed lower inherent glycemic potential (60.4%) than the untreated sample (72.4%) and less enzymatic activities associated with rancidity in PM flour. FTIR revealed an increased ratio of 1047/1022 cm-1 in the hydrothermally treated sample, reflecting the enhancement of the structurally ordered degree and compactness of starch compared to other thermal treatments. A tighter and more compact microstructure with an agglomeration of starch in the hydrothermally treated PM flour was observed by SEM. These structural changes could provide a better understanding of the lower starch digestion rate in the hydrothermally treated flour. However, HT treatment significantly (P < 0.05) reduced the bioaccessibility of phenolics (10.6%) compared to native PM rotis and slightly reduced the Fe (2%) and Zn (3.2%) bioaccessibility present in PM rotis.


Asunto(s)
Pennisetum , Pennisetum/química , Micronutrientes/análisis , Fenoles/análisis , Grano Comestible/química , Harina/análisis , Almidón/química , Digestión
6.
Toxics ; 11(1)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36668790

RESUMEN

We investigated the effect of practically realizable doses of silicate on arsenic (As) uptake by differential-As-accumulating rice cultivars grown on geogenically As-polluted soil. The possible health risk from the dietary ingestion of As through rice was also assessed. In addition, a solution culture experiment was conducted to examine the role of root-secreted weak acids in differential As acquisition by rice cultivars. When grown without silicate, Badshabhog accumulated a much smaller amount of As in grain (0.11 mg kg-1) when compared to the other three varieties. Satabdi, IR-36, and Khitish accumulated As in grain beyond the permissible limit (0.2 mg kg-1) for human consumption. The application of silicate effectively reduced the As content in the grain, husk, and straw of all of the cultivars. The grain As content fell to 17.2 and 27.6% with the addition of sodium metasilicate at the rates of 250 and 500 mg kg-1, respectively. In the case of Khitish, the grain As content was brought down within permissible limits by the applied silicate (500 mg kg-1). The integrated use of low-As-accumulating cultivars and silicate has great potential to reduce the public health risks associated with As. A positive correlation between root-secreted total weak acid and grain As content could explain the different rice cultivars' differential As acquisition capacity.

7.
Environ Sci Pollut Res Int ; 26(17): 17224-17235, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31012068

RESUMEN

For remediating polluted soils, phytoextraction of metals received considerable attention in recent years, although slow removal of metals remained a major constraint in this approach. We, therefore, studied the effect of selected organic and inorganic amendments on the solubility of zinc (Zn), cadmium (Cd), and lead (Pb) in polluted soil and enhancing the efficacy of phytoextraction of these metals by Indian mustard (Brassica juncea cv. Pusa Vijay). For this purpose, a greenhouse experiment was conducted using a metal-polluted soil to evaluate the effect of amendments, viz. green manure (T2), EDTA (T3), sulfur (S)+S oxidizing bacteria (Thiobacillus spp.) (T4), metal-solubilizing bacteria (Pseudomonas spp.) (T5), and green manure + metal-solubilizing bacteria (T6), on solubility and bioavailability of Zn, Cd, and Pb. Distribution of metals in different soil fractions revealed that Cd content in water soluble + exchangeable fraction increased to the extent of 34.1, 523, 133, 123, and 75.8% in T2, T3, T4, T5, and T6 treatments, respectively, over control (T1). Cadmium concentrations in soil solution as extracted by Rhizon sampler were recorded as 3.78, 88.1, 11.2, 6.29, and 4.27 µg L-1in T2, T3, T4, T5, and T6, respectively, whereas soil solution concentration of Cd in T1 was 0.99 µg L-1. Activities of Cd (pCd2+) in Baker soil extract were 12.2, 10.9, 6.72, 7.74, 7.67, and 7.05 for T1, T2, T3, T4, T5, and T6, respectively. Cadmium contents in shoot were recorded as 2.74, 3.12, 4.03, 4.55, 4.68, and 4.63 mg kg-1 in T1, T2, T3, T4, T5, and T6 treatments, respectively. Similar trend in Zn and Pb content with different magnitude was also observed across the different amendments. Cadmium uptake by shoot of mustard was enhanced to the extent of 125, 62.5, 175, 175, and 212% grown on T2-, T3-, T4-, T5-, and T6-treated soil, respectively, over T1. By and large, free ion activity of metals as measured by Baker soil test proved to be the most effective index for predicting Zn, Cd, and Pb content in shoot of mustard, followed by EDTA and DTPA. Among the metal fractions, only water soluble + exchangeable metal contributed positively towards plant uptake, which explained the variation in shoot Zn, Cd, and Pb content to the extent of 74, 81, and 87%, respectively, along with other soil metal fractions. Risk to human health for intake of metals through the consumption of leafy vegetable (mustard) grown on polluted soil in terms of hazard quotient (HQ) ranged from 0.64 to 1.10 for Cd and 0.11 to 0.34 for Pb, thus rendering mustard unfit for the human consumption. Novelty of the study mainly consisted of the use of natural means and microorganisms for enhancing solubility of metals in soil with the ultimate aim of hastening the phytoremediation.


Asunto(s)
Cadmio/análisis , Fertilizantes , Plomo/análisis , Planta de la Mostaza/crecimiento & desarrollo , Microbiología del Suelo , Contaminantes del Suelo/análisis , Zinc/análisis , Biodegradación Ambiental , Disponibilidad Biológica , Planta de la Mostaza/química , Suelo/química
8.
Interdiscip Toxicol ; 8(2): 65-7, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27486362

RESUMEN

Aluminium phosphide (AlP) is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. AlP has currently aroused interest with a rising number of cases in the past four decades due to increased use for agricultural and non-agricultural purposes. Its easy availability in the markets has increased also its misuse for committing suicide. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. Poisoning with AlP has often occurred in attempts to commit suicide, and that more often in adults than in teenagers. This is a case of suicidal consumption of aluminium phosphide by a 32-year-old young medical anesthetist. Toxicological analyses detected aluminium phosphide. We believe that free access of celphos tablets in grain markets should be prohibited by law.

9.
Adv Hematol ; 2015: 648349, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26880923

RESUMEN

Chronic hemoglobinopathies like thalassemia are associated with many osteopathies like osteoporosis. Methods. This observational study was carried out to compare the bone mineral density (BMD) in transfusion dependent thalassemics with that of healthy controls. Thirty-two thalassemia patients, aged 2-18 years, and 32 age and sex matched controls were studied. The bone mineral concentration (BMC) and BMD were assessed at lumbar spine, distal radius, and neck of femur. Biochemical parameters like serum calcium and vitamin D levels were also assessed. Results. The BMC of neck of femur was significantly low in cases in comparison to controls. We also observed significantly lower BMD at the lumbar spine in cases in comparison to controls. A significantly positive correlation was observed between serum calcium levels and BMD at neck of femur. Conclusion. Hence, low serum calcium may be used as a predictor of low BMD especially in populations where incidence of hypovitaminosis D is very high.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...