Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37570977

RESUMEN

Cicer arietinum L. (Bengal gram, chickpea) is one of the major pulse crops and an important part of traditional diets in Asia, Africa, and South America. The present study was conducted to determine the changes in total isoflavones during sprouting (0, 3, and 7 days) along with the effect of two precursor supplementations, p-coumaric acid (p-CA) and L-phenylalanine (Phe), in C. arietinum. It was observed that increasing sprouting time up to the seventh day resulted in ≈1282 mg 100 g-1 isoflavones, which is approximately eight times higher than chickpea seeds. The supplementation of Phe did not affect the total length of sprouts, whereas the supplementation of p-CA resulted in stunted sprouts. On the third day of supplementation with p-CA (250 mg L-1), the increase in the total phenolic content (TPC) (80%), daidzein (152%), and genistin (158%) contents were observed, and further extending the supplementation reduced the growth of sprouts. On the seventh day of supplementation with Phe (500 mg L-1), the increase in TPC by 43% and genistin content by 74% was observed compared with non-treated sprouts; however, the total isoflavones content was found to be 1212 mg 100 g-1. The increased TPC was positively correlated with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (r = 0.787) and ferric-reducing antioxidant potential (FRAP) (r = 0.676) activity. This study suggests that chickpea sprouts enriched in TPC and antioxidants can be produced by the appropriate quantity of precursor supplementation on a particular day. The results indicated major changes in the phytochemical content, especially daidzein and genistin. It was also concluded that the consumption of 100 g of seventh-day sprouts provided eight times higher amounts of isoflavones in comparison to chickpea seeds.

2.
Biol Futur ; 71(3): 195-208, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34554518

RESUMEN

Bioactive peptides (BPs) are 3-20 amino acid residues, with a molecular weight lower than 6 kDa; originated from the breakdown of proteins by endogenous and exogenous peptidases. While intact in protein these peptides do not exert any biological activity, but as they release from their parent protein, they exert various pharmacological activities such as antidiabetic, antihypertensive, anticancerous, anti-inflammatory, antimicrobial, antioxidant, and immunomodulatory. Such peptides exist in all living organism like plants, animals, marine organism and also present in food products derived from them. BPs obtained from dairy food products, cereals, vegetables have been gaining much more importance now-a-days, but little work has been done on bioactive peptides obtained from medicinal plants. Some of the medicinal plants such as Tinospora cordifolia Sterculia foetida, Benincasa hispida, Parkia speciosa, Linum usitatissimum, Salvia hispanica and Ziziphus jujube have been explored for bioactive peptides. Current review is aimed to provide a complete information of medicinal plants derived BPs along with the surge of new materials, new plants which will provide more solutions for handling some of the major human health problems of twenty-first century. This review will also be helpful to researchers in providing valuable information about the extraction, separation, characterization of BPs, their known peptide sequences and various pharmacological activities exerted by medicinal plants-derived bioactive peptides.


Asunto(s)
Péptidos/uso terapéutico , Extractos Vegetales/uso terapéutico , Plantas Medicinales/química , Bioprospección , Evaluación Preclínica de Medicamentos , Humanos , Péptidos/aislamiento & purificación , Péptidos/metabolismo , Péptidos/farmacología , Extractos Vegetales/farmacología , Plantas Medicinales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA