Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Brain ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38527854

RESUMEN

Genome-wide association studies have successfully identified many genetic risk loci for dementia, but exact biological mechanisms through which genetic risk factors contribute to dementia remains unclear. Integrating CSF proteomic data with dementia risk loci could reveal intermediate molecular pathways connecting genetic variance to the development of dementia. We tested to what extent effects of known dementia risk loci can be observed in CSF levels of 665 proteins (proximity extension-based (PEA) immunoassays) in a deeply-phenotyped mixed-memory clinic cohort (n=502, mean age (sd) = 64.1 [8.7] years, 181 female [35.4%]), including patients with Alzheimer's disease (AD, n=213), dementia with Lewy bodies (DLB, n=50) and frontotemporal dementia (FTD, n=93), and controls (n=146). Validation was assessed in independent cohorts (n=99 PEA platform, n=198, MRM-targeted mass spectroscopy and multiplex assay). We performed additional analyses stratified according to diagnostic status (AD, DLB, FTD and controls separately), to explore whether associations between CSF proteins and genetic variants were specific to disease or not. We identified four AD risk loci as protein quantitative trait loci (pQTL): CR1-CR2 (rs3818361, P=1.65e-08), ZCWPW1-PILRB (rs1476679, P=2.73e-32), CTSH-CTSH (rs3784539, P=2.88e-24) and HESX1-RETN (rs186108507, P=8.39e-08), of which the first three pQTLs showed direct replication in the independent cohorts. We identified one AD-specific association between a rare genetic variant of TREM2 and CSF IL6 levels (rs75932628, P = 3.90e-7). DLB risk locus GBA showed positive trans effects on seven inter-related CSF levels in DLB patients only. No pQTLs were identified for frontotemporal dementia, either for the total sample as for analyses performed within FTD only. pQTL variants were involved in the immune system, highlighting the importance of this system in the pathophysiology of dementia. We further identified pQTLs in stratified analyses for AD and DLB, hinting at disease-specific pQTLs in dementia. Dissecting the contribution of risk loci to neurobiological processes aids in understanding disease mechanisms underlying dementia.

2.
Ann Clin Transl Neurol ; 11(3): 744-756, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38481040

RESUMEN

OBJECTIVE: Methylation of plasma cell-free DNA (cfDNA) has potential as a marker of brain damage in neurodegenerative diseases such as frontotemporal dementia (FTD). Here, we study methylation of cfDNA in presymptomatic and symptomatic carriers of genetic FTD pathogenic variants, next to healthy controls. METHODS: cfDNA was isolated from cross-sectional plasma of 10 presymptomatic carriers (4 C9orf72, 4 GRN, and 2 MAPT), 10 symptomatic carriers (4 C9orf72, 4 GRN, and 2 MAPT), and 9 healthy controls. Genome-wide methylation of cfDNA was determined using a high-resolution sequencing technique (MeD-seq). Cumulative scores based on the identified differentially methylated regions (DMRs) were estimated for presymptomatic carriers (vs. controls and symptomatic carriers), and reevaluated in a validation cohort (8 presymptomatic: 3 C9orf72, 3 GRN, and 2 MAPT; 26 symptomatic: 7 C9orf72, 6 GRN, 12 MAPT, and 1 TARDBP; 13 noncarriers from genetic FTD families). RESULTS: Presymptomatic carriers showed a distinctive methylation profile compared to healthy controls and symptomatic carriers. Cumulative DMR scores in presymptomatic carriers enabled to significantly differentiate presymptomatic carriers from healthy controls (p < 0.001) and symptomatic carriers (p < 0.001). In the validation cohort, these scores differentiated presymptomatic carriers from symptomatic carriers (p ≤ 0.007) only. Transcription-start-site methylation in presymptomatic carriers, generally associated with gene downregulation, was enriched for genes involved in ubiquitin-dependent processes, while gene body methylation, generally associated with gene upregulation, was enriched for genes involved in neuronal cell processes. INTERPRETATION: A distinctive methylation profile of cfDNA characterizes the presymptomatic stage of genetic FTD, and could reflect neuronal death in this stage.


Asunto(s)
Ácidos Nucleicos Libres de Células , Demencia Frontotemporal , Enfermedad de Pick , Humanos , Demencia Frontotemporal/patología , Proteína C9orf72/genética , Estudios Transversales , Metilación de ADN , Mutación , Enfermedad de Pick/genética , Ácidos Nucleicos Libres de Células/genética
3.
Neurology ; 101(10): e1069-e1082, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37491327

RESUMEN

BACKGROUND AND OBJECTIVES: Elevated serum neurofilament light chain (NfL) is used to identify carriers of genetic frontotemporal dementia (FTD) pathogenic variants approaching prodromal conversion. Yet, the magnitude and timeline of NfL increase are still unclear. Here, we investigated the predictive and early diagnostic value of longitudinal serum NfL for the prodromal conversion in genetic FTD. METHODS: In a longitudinal observational cohort study of genetic FTD pathogenic variant carriers, we examined the diagnostic accuracy and conversion risk associated with cross-sectional and longitudinal NfL. Time periods relative to prodromal conversion (>3, 3-1.5, 1.5-0 years before; 0-1.5 years after) were compared with values of participants who did not convert. Next, we modeled longitudinal NfL and MRI volume trajectories to determine their timeline. RESULTS: We included 21 participants who converted (5 chromosome 9 open-reading frame 72 [C9orf72], 10 progranulin [GRN], 5 microtubule-associated protein tau [MAPT], and 1 TAR DNA-binding protein [TARDBP]) and 61 who did not (20 C9orf72, 30 GRN, and 11 MAPT). Participants who converted had higher NfL levels at all examined periods before prodromal conversion (median values 14.0-18.2 pg/mL; betas = 0.4-0.7, standard error [SE] = 0.1, p < 0.046) than those who did not (6.5 pg/mL) and showed further increase 0-1.5 years after conversion (28.4 pg/mL; beta = 1.0, SE = 0.1, p < 0.001). Annualized longitudinal NfL change was only significantly higher in participants who converted (vs. participants who did not) 0-1.5 years after conversion (beta = 1.2, SE = 0.3, p = 0.001). Diagnostic accuracy of cross-sectional NfL for prodromal conversion (vs. nonconversion) was good-to-excellent at time periods before conversion (area under the curve range: 0.72-0.92), improved 0-1.5 years after conversion (0.94-0.97), and outperformed annualized longitudinal change (0.76-0.84). NfL increase in participants who converted occurred earlier than frontotemporal MRI volume change and differed by genetic group and clinical phenotypes. Higher NfL corresponded to increased conversion risk (hazard ratio: cross-sectional = 6.7 [95% CI 3.3-13.7]; longitudinal = 13.0 [95% CI 4.0-42.8]; p < 0.001), but conversion-free follow-up time varied greatly across participants. DISCUSSION: NfL increase discriminates individuals who convert to prodromal FTD from those who do not, preceding significant frontotemporal MRI volume loss. However, NfL alone is limited in predicting the exact timing of prodromal conversion. NfL levels also vary depending on underlying variant-carrying genes and clinical phenotypes. These findings help to guide participant recruitment for clinical trials targeting prodromal genetic FTD.


Asunto(s)
Demencia Frontotemporal , Enfermedad de Pick , Humanos , Biomarcadores , Proteína C9orf72/genética , Estudios de Cohortes , Estudios Transversales , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Filamentos Intermedios , Proteínas de Neurofilamentos , Proteínas tau/genética
4.
J Neuroinflammation ; 19(1): 217, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064709

RESUMEN

BACKGROUND: Neuroinflammation is emerging as an important pathological process in frontotemporal dementia (FTD), but biomarkers are lacking. We aimed to determine the value of complement proteins, which are key components of innate immunity, as biomarkers in cerebrospinal fluid (CSF) and plasma of presymptomatic and symptomatic genetic FTD mutation carriers. METHODS: We measured the complement proteins C1q and C3b in CSF by ELISAs in 224 presymptomatic and symptomatic GRN, C9orf72 or MAPT mutation carriers and non-carriers participating in the Genetic Frontotemporal Dementia Initiative (GENFI), a multicentre cohort study. Next, we used multiplex immunoassays to measure a panel of 14 complement proteins in plasma of 431 GENFI participants. We correlated complement protein levels with corresponding clinical and neuroimaging data, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP). RESULTS: CSF C1q and C3b, as well as plasma C2 and C3, were elevated in symptomatic mutation carriers compared to presymptomatic carriers and non-carriers. In genetic subgroup analyses, these differences remained statistically significant for C9orf72 mutation carriers. In presymptomatic carriers, several complement proteins correlated negatively with grey matter volume of FTD-related regions and positively with NfL and GFAP. In symptomatic carriers, correlations were additionally observed with disease duration and with Mini Mental State Examination and Clinical Dementia Rating scale® plus NACC Frontotemporal lobar degeneration sum of boxes scores. CONCLUSIONS: Elevated levels of CSF C1q and C3b, as well as plasma C2 and C3, demonstrate the presence of complement activation in the symptomatic stage of genetic FTD. Intriguingly, correlations with several disease measures in presymptomatic carriers suggest that complement protein levels might increase before symptom onset. Although the overlap between groups precludes their use as diagnostic markers, further research is needed to determine their potential to monitor dysregulation of the complement system in FTD.


Asunto(s)
Demencia Frontotemporal , Enfermedad de Pick , Biomarcadores , Proteína C9orf72/genética , Estudios de Cohortes , Complemento C1q , Proteínas del Sistema Complemento/genética , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Humanos
5.
Brain ; 145(5): 1805-1817, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34633446

RESUMEN

Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection ('converters'). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model's ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions.


Asunto(s)
Demencia Frontotemporal , Biomarcadores , Proteína C9orf72/genética , Complemento C1q , Estudios Transversales , Progresión de la Enfermedad , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/genética , Proteína Ácida Fibrilar de la Glía , Humanos , Estudios Longitudinales , Mutación , Proteínas tau/genética
6.
Nat Aging ; 2(11): 1040-1053, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-37118088

RESUMEN

Development of disease-modifying therapies against Alzheimer's disease (AD) requires biomarkers reflecting the diverse pathological pathways specific for AD. We measured 665 proteins in 797 cerebrospinal fluid (CSF) samples from patients with mild cognitive impairment with abnormal amyloid (MCI(Aß+): n = 50), AD-dementia (n = 230), non-AD dementias (n = 322) and cognitively unimpaired controls (n = 195) using proximity ligation-based immunoassays. Here we identified >100 CSF proteins dysregulated in MCI(Aß+) or AD compared to controls or non-AD dementias. Proteins dysregulated in MCI(Aß+) were primarily related to protein catabolism, energy metabolism and oxidative stress, whereas those specifically dysregulated in AD dementia were related to cell remodeling, vascular function and immune system. Classification modeling unveiled biomarker panels discriminating clinical groups with high accuracies (area under the curve (AUC): 0.85-0.99), which were translated into custom multiplex assays and validated in external and independent cohorts (AUC: 0.8-0.99). Overall, this study provides novel pathophysiological leads delineating the multifactorial nature of AD and potential biomarker tools for diagnostic settings or clinical trials.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico , Proteoma , Péptidos beta-Amiloides/líquido cefalorraquídeo , Disfunción Cognitiva/diagnóstico , Biomarcadores/líquido cefalorraquídeo
7.
Biomolecules ; 11(10)2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34680117

RESUMEN

Biomarkers to discriminate the main pathologies underlying frontotemporal lobar degeneration (FTLD-Tau, FTLD-TDP) are lacking. Our previous FTLD cerebrospinal fluid (CSF) proteome study revealed that sex hormone-binding globulin (SHBG) was specifically increased in FTLD-Tau patients. Here we investigated the potential of CSF SHBG as a novel biomarker discriminating the main FTLD pathological subtypes. SHBG was measured in CSF samples from patients with FTLD-Tau (n = 23), FTLD-TDP (n = 29) and controls (n = 33) using an automated electro-chemiluminescent immunoassay. Differences in CSF SHBG levels across groups, as well as its association with CSF YKL40, pTau181/total-Tau ratio and cognitive function were analyzed. CSF SHBG did not differ across groups, though a trend towards elevated levels in FTLD-Tau cases compared to FTLD-TDP and controls was observed. CSF SHBG levels were not associated with either CSF YKL40 or the p/tTau ratio. They, however, inversely correlated with the MMSE score (r = -0.307, p = 0.011), an association likely driven by the FTLD-Tau group (r FTLD-Tau = -0.38; r FTLD-TDP = -0.02). CSF SHBG is not a suitable biomarker to discriminate FTLD-Tau from FTLD-TDP.


Asunto(s)
Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/complicaciones , Degeneración Lobar Frontotemporal/líquido cefalorraquídeo , Degeneración Lobar Frontotemporal/patología , Globulina de Unión a Hormona Sexual/líquido cefalorraquídeo , Tauopatías/líquido cefalorraquídeo , Tauopatías/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad
8.
J Neurol Neurosurg Psychiatry ; 92(5): 494-501, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33452053

RESUMEN

OBJECTIVE: Progranulin-related frontotemporal dementia (FTD-GRN) is a fast progressive disease. Modelling the cascade of multimodal biomarker changes aids in understanding the aetiology of this disease and enables monitoring of individual mutation carriers. In this cross-sectional study, we estimated the temporal cascade of biomarker changes for FTD-GRN, in a data-driven way. METHODS: We included 56 presymptomatic and 35 symptomatic GRN mutation carriers, and 35 healthy non-carriers. Selected biomarkers were neurofilament light chain (NfL), grey matter volume, white matter microstructure and cognitive domains. We used discriminative event-based modelling to infer the cascade of biomarker changes in FTD-GRN and estimated individual disease severity through cross-validation. We derived the biomarker cascades in non-fluent variant primary progressive aphasia (nfvPPA) and behavioural variant FTD (bvFTD) to understand the differences between these phenotypes. RESULTS: Language functioning and NfL were the earliest abnormal biomarkers in FTD-GRN. White matter tracts were affected before grey matter volume, and the left hemisphere degenerated before the right. Based on individual disease severities, presymptomatic carriers could be delineated from symptomatic carriers with a sensitivity of 100% and specificity of 96.1%. The estimated disease severity strongly correlated with functional severity in nfvPPA, but not in bvFTD. In addition, the biomarker cascade in bvFTD showed more uncertainty than nfvPPA. CONCLUSION: Degeneration of axons and language deficits are indicated to be the earliest biomarkers in FTD-GRN, with bvFTD being more heterogeneous in disease progression than nfvPPA. Our data-driven model could help identify presymptomatic GRN mutation carriers at risk of conversion to the clinical stage.


Asunto(s)
Cognición/fisiología , Demencia Frontotemporal/genética , Sustancia Gris/diagnóstico por imagen , Mutación , Progranulinas/genética , Sustancia Blanca/diagnóstico por imagen , Anciano , Biomarcadores , Encéfalo/diagnóstico por imagen , Progresión de la Enfermedad , Femenino , Demencia Frontotemporal/sangre , Demencia Frontotemporal/diagnóstico por imagen , Humanos , Lenguaje , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Proteínas de Neurofilamentos/sangre , Pruebas Neuropsicológicas , Fenotipo
9.
Brain Pathol ; 31(1): 163-173, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32865835

RESUMEN

A repeat expansion in the C9orf72 gene is the most prevalent genetic cause of frontotemporal dementia (C9-FTD). Several studies have indicated the involvement of the unfolded protein response (UPR) in C9-FTD. In human neuropathology, UPR markers are strongly associated with granulovacuolar degeneration (GVD). In this study, we aim to assess the presence of UPR markers together with the presence of dipeptide pathology and GVD in post mortem brain tissue from C9-FTD cases and neurologically healthy controls. Using immunohistochemistry we assessed the presence of phosphorylated PERK, IRE1α and eIF2α in the frontal cortex, hippocampus and cerebellum of C9-FTD (n = 18) and control (n = 9) cases. The presence of UPR activation markers was compared with the occurrence of pTDP-43, p62 and dipeptide repeat (DPR) proteins (poly(GA), -(GR) & -(GP)) as well as casein kinase 1 delta (CK1δ), a marker for GVD. Increased presence of UPR markers was observed in the hippocampus and cerebellum in C9-FTD compared to control cases. In the hippocampus, overall levels of pPERK and peIF2α were higher in C9-FTD, including in granule cells of the dentate gyrus (DG). UPR markers were also observed in granule cells of the cerebellum in C9-FTD. In addition, increased levels of CK1δ were observed in granule cells in the DG of the hippocampus and granular layer of the cerebellum in C9-FTD. Double-labelling experiments indicate a strong association between UPR markers and the presence of dipeptide pathology as well as GVD. We conclude that UPR markers are increased in C9-FTD and that their presence is associated with dipeptide pathology and GVD. Increased presence of UPR markers and CK1δ in granule cells in the cerebellum and hippocampus could be a unique feature of C9-FTD.


Asunto(s)
Encéfalo/patología , Proteína C9orf72/genética , Demencia Frontotemporal/patología , Degeneración Nerviosa/patología , Neuronas/patología , Respuesta de Proteína Desplegada/fisiología , Adulto , Anciano , Encéfalo/metabolismo , Dipéptidos , Femenino , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo
10.
J Neurol Neurosurg Psychiatry ; 91(6): 612-621, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32273328

RESUMEN

INTRODUCTION: Synapse dysfunction is emerging as an early pathological event in frontotemporal dementia (FTD), however biomarkers are lacking. We aimed to investigate the value of cerebrospinal fluid (CSF) neuronal pentraxins (NPTXs), a family of proteins involved in homeostatic synapse plasticity, as novel biomarkers in genetic FTD. METHODS: We included 106 presymptomatic and 54 symptomatic carriers of a pathogenic mutation in GRN, C9orf72 or MAPT, and 70 healthy non-carriers participating in the Genetic Frontotemporal dementia Initiative (GENFI), all of whom had at least one CSF sample. We measured CSF concentrations of NPTX2 using an in-house ELISA, and NPTX1 and NPTX receptor (NPTXR) by Western blot. We correlated NPTX2 with corresponding clinical and neuroimaging datasets as well as with CSF neurofilament light chain (NfL) using linear regression analyses. RESULTS: Symptomatic mutation carriers had lower NPTX2 concentrations (median 643 pg/mL, IQR (301-872)) than presymptomatic carriers (1003 pg/mL (624-1358), p<0.001) and non-carriers (990 pg/mL (597-1373), p<0.001) (corrected for age). Similar results were found for NPTX1 and NPTXR. Among mutation carriers, NPTX2 concentration correlated with several clinical disease severity measures, NfL and grey matter volume of the frontal, temporal and parietal lobes, insula and whole brain. NPTX2 predicted subsequent decline in phonemic verbal fluency and Clinical Dementia Rating scale plus FTD modules. In longitudinal CSF samples, available in 13 subjects, NPTX2 decreased around symptom onset and in the symptomatic stage. DISCUSSION: We conclude that NPTX2 is a promising synapse-derived disease progression biomarker in genetic FTD.


Asunto(s)
Proteína C-Reactiva/líquido cefalorraquídeo , Demencia Frontotemporal/diagnóstico , Proteínas del Tejido Nervioso/líquido cefalorraquídeo , Adulto , Anciano , Biomarcadores/líquido cefalorraquídeo , Progresión de la Enfermedad , Femenino , Demencia Frontotemporal/líquido cefalorraquídeo , Demencia Frontotemporal/genética , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Neurofilamentos/líquido cefalorraquídeo
11.
Lancet Neurol ; 19(2): 145-156, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31810826

RESUMEN

BACKGROUND: Frontotemporal dementia is a heterogenous neurodegenerative disorder, with about a third of cases being genetic. Most of this genetic component is accounted for by mutations in GRN, MAPT, and C9orf72. In this study, we aimed to complement previous phenotypic studies by doing an international study of age at symptom onset, age at death, and disease duration in individuals with mutations in GRN, MAPT, and C9orf72. METHODS: In this international, retrospective cohort study, we collected data on age at symptom onset, age at death, and disease duration for patients with pathogenic mutations in the GRN and MAPT genes and pathological expansions in the C9orf72 gene through the Frontotemporal Dementia Prevention Initiative and from published papers. We used mixed effects models to explore differences in age at onset, age at death, and disease duration between genetic groups and individual mutations. We also assessed correlations between the age at onset and at death of each individual and the age at onset and at death of their parents and the mean age at onset and at death of their family members. Lastly, we used mixed effects models to investigate the extent to which variability in age at onset and at death could be accounted for by family membership and the specific mutation carried. FINDINGS: Data were available from 3403 individuals from 1492 families: 1433 with C9orf72 expansions (755 families), 1179 with GRN mutations (483 families, 130 different mutations), and 791 with MAPT mutations (254 families, 67 different mutations). Mean age at symptom onset and at death was 49·5 years (SD 10·0; onset) and 58·5 years (11·3; death) in the MAPT group, 58·2 years (9·8; onset) and 65·3 years (10·9; death) in the C9orf72 group, and 61·3 years (8·8; onset) and 68·8 years (9·7; death) in the GRN group. Mean disease duration was 6·4 years (SD 4·9) in the C9orf72 group, 7·1 years (3·9) in the GRN group, and 9·3 years (6·4) in the MAPT group. Individual age at onset and at death was significantly correlated with both parental age at onset and at death and with mean family age at onset and at death in all three groups, with a stronger correlation observed in the MAPT group (r=0·45 between individual and parental age at onset, r=0·63 between individual and mean family age at onset, r=0·58 between individual and parental age at death, and r=0·69 between individual and mean family age at death) than in either the C9orf72 group (r=0·32 individual and parental age at onset, r=0·36 individual and mean family age at onset, r=0·38 individual and parental age at death, and r=0·40 individual and mean family age at death) or the GRN group (r=0·22 individual and parental age at onset, r=0·18 individual and mean family age at onset, r=0·22 individual and parental age at death, and r=0·32 individual and mean family age at death). Modelling showed that the variability in age at onset and at death in the MAPT group was explained partly by the specific mutation (48%, 95% CI 35-62, for age at onset; 61%, 47-73, for age at death), and even more by family membership (66%, 56-75, for age at onset; 74%, 65-82, for age at death). In the GRN group, only 2% (0-10) of the variability of age at onset and 9% (3-21) of that of age of death was explained by the specific mutation, whereas 14% (9-22) of the variability of age at onset and 20% (12-30) of that of age at death was explained by family membership. In the C9orf72 group, family membership explained 17% (11-26) of the variability of age at onset and 19% (12-29) of that of age at death. INTERPRETATION: Our study showed that age at symptom onset and at death of people with genetic frontotemporal dementia is influenced by genetic group and, particularly for MAPT mutations, by the specific mutation carried and by family membership. Although estimation of age at onset will be an important factor in future pre-symptomatic therapeutic trials for all three genetic groups, our study suggests that data from other members of the family will be particularly helpful only for individuals with MAPT mutations. Further work in identifying both genetic and environmental factors that modify phenotype in all groups will be important to improve such estimates. FUNDING: UK Medical Research Council, National Institute for Health Research, and Alzheimer's Society.


Asunto(s)
Edad de Inicio , Demencia Frontotemporal/genética , Demencia Frontotemporal/mortalidad , Adulto , Anciano , Anciano de 80 o más Años , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Estudios de Cohortes , Progresión de la Enfermedad , Familia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Fenotipo , Progranulinas/genética , Progranulinas/metabolismo , Estudios Retrospectivos , Proteínas tau/genética , Proteínas tau/metabolismo
12.
Lancet Neurol ; 18(12): 1103-1111, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31701893

RESUMEN

BACKGROUND: Neurofilament light chain (NfL) is a promising blood biomarker in genetic frontotemporal dementia, with elevated concentrations in symptomatic carriers of mutations in GRN, C9orf72, and MAPT. A better understanding of NfL dynamics is essential for upcoming therapeutic trials. We aimed to study longitudinal NfL trajectories in people with presymptomatic and symptomatic genetic frontotemporal dementia. METHODS: We recruited participants from 14 centres collaborating in the Genetic Frontotemporal Dementia Initiative (GENFI), which is a multicentre cohort study of families with genetic frontotemporal dementia done across Europe and Canada. Eligible participants (aged ≥18 years) either had frontotemporal dementia due to a pathogenic mutation in GRN, C9orf72, or MAPT (symptomatic mutation carriers) or were healthy at-risk first-degree relatives (either presymptomatic mutation carriers or non-carriers), and had at least two serum samples with a time interval of 6 months or more. Participants were excluded if they had neurological comorbidities that were likely to affect NfL, including cerebrovascular events. We measured NfL longitudinally in serum samples collected between June 8, 2012, and Dec 8, 2017, through follow-up visits annually or every 2 years, which also included MRI and neuropsychological assessments. Using mixed-effects models, we analysed NfL changes over time and correlated them with longitudinal imaging and clinical parameters, controlling for age, sex, and study site. The primary outcome was the course of NfL over time in the various stages of genetic frontotemporal dementia. FINDINGS: We included 59 symptomatic carriers and 149 presymptomatic carriers of a mutation in GRN, C9orf72, or MAPT, and 127 non-carriers. Nine presymptomatic carriers became symptomatic during follow-up (so-called converters). Baseline NfL was elevated in symptomatic carriers (median 52 pg/mL [IQR 24-69]) compared with presymptomatic carriers (9 pg/mL [6-13]; p<0·0001) and non-carriers (8 pg/mL [6-11]; p<0·0001), and was higher in converters than in non-converting carriers (19 pg/mL [17-28] vs 8 pg/mL [6-11]; p=0·0007; adjusted for age). During follow-up, NfL increased in converters (b=0·097 [SE 0·018]; p<0·0001). In symptomatic mutation carriers overall, NfL did not change during follow-up (b=0·017 [SE 0·010]; p=0·101) and remained elevated. Rates of NfL change over time were associated with rate of decline in Mini Mental State Examination (b=-94·7 [SE 33·9]; p=0·003) and atrophy rate in several grey matter regions, but not with change in Frontotemporal Lobar Degeneration-Clinical Dementia Rating scale score (b=-3·46 [SE 46·3]; p=0·941). INTERPRETATION: Our findings show the value of blood NfL as a disease progression biomarker in genetic frontotemporal dementia and suggest that longitudinal NfL measurements could identify mutation carriers approaching symptom onset and capture rates of brain atrophy. The characterisation of NfL over the course of disease provides valuable information for its use as a treatment effect marker. FUNDING: ZonMw and the Bluefield project.


Asunto(s)
Demencia Frontotemporal/sangre , Demencia Frontotemporal/genética , Proteínas de Neurofilamentos/sangre , Proteínas de Neurofilamentos/genética , Adulto , Anciano , Biomarcadores/sangre , Proteína C9orf72/genética , Estudios de Cohortes , Femenino , Demencia Frontotemporal/diagnóstico por imagen , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad
13.
Front Neurosci ; 13: 729, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379483

RESUMEN

Neuroimaging MRI data in scientific research is increasingly pooled, but the reliability of such studies may be hampered by the use of different hardware elements. This might introduce bias, for example when cross-sectional studies pool data acquired with different head coils, or when longitudinal clinical studies change head coils halfway. In the present study, we aimed to estimate this possible bias introduced by using different head coils to create awareness and to avoid misinterpretation of results. We acquired, with both an 8 channel and 32 channel head coil, T1-weighted, diffusion tensor imaging and resting state fMRI images at 3T MRI (Philips Achieva) with stable acquisition parameters in a large group of cognitively healthy participants (n = 77). Standard analysis methods, i.e., voxel-based morphometry, tract-based spatial statistics and resting state functional network analyses, were used in a within-subject design to compare 8 and 32 channel head coil data. Signal-to-noise ratios (SNR) for both head coils showed similar ranges, although the 32 channel SNR profile was more homogeneous. Our data demonstrates specific patterns of gray and white matter volume differences between head coils (relative volume change of 6 to 9%), related to altered image contrast and therefore, altered tissue segmentation. White matter connectivity (fractional anisotropy and diffusivity measures) showed hemispherical dependent differences between head coils (relative connectivity change of 4 to 6%), and functional connectivity in resting state networks was higher using the 32 channel head coil in posterior cortical areas (relative change up to 27.5%). This study shows that, even when acquisition protocols are harmonized, the results of standardized analysis models can be severely affected by the use of different head coils. Researchers should be aware of this when combining multiple neuroimaging MRI datasets, to prevent coil-related bias and avoid misinterpretation of their findings.

14.
JAMA Neurol ; 76(9): 1035-1048, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31206160

RESUMEN

IMPORTANCE: Neurofilament light protein (NfL) is elevated in cerebrospinal fluid (CSF) of a number of neurological conditions compared with healthy controls (HC) and is a candidate biomarker for neuroaxonal damage. The influence of age and sex is largely unknown, and levels across neurological disorders have not been compared systematically to date. OBJECTIVES: To assess the associations of age, sex, and diagnosis with NfL in CSF (cNfL) and to evaluate its potential in discriminating clinically similar conditions. DATA SOURCES: PubMed was searched for studies published between January 1, 2006, and January 1, 2016, reporting cNfL levels (using the search terms neurofilament light and cerebrospinal fluid) in neurological or psychiatric conditions and/or in HC. STUDY SELECTION: Studies reporting NfL levels measured in lumbar CSF using a commercially available immunoassay, as well as age and sex. DATA EXTRACTION AND SYNTHESIS: Individual-level data were requested from study authors. Generalized linear mixed-effects models were used to estimate the fixed effects of age, sex, and diagnosis on log-transformed NfL levels, with cohort of origin modeled as a random intercept. MAIN OUTCOME AND MEASURE: The cNfL levels adjusted for age and sex across diagnoses. RESULTS: Data were collected for 10 059 individuals (mean [SD] age, 59.7 [18.8] years; 54.1% female). Thirty-five diagnoses were identified, including inflammatory diseases of the central nervous system (n = 2795), dementias and predementia stages (n = 4284), parkinsonian disorders (n = 984), and HC (n = 1332). The cNfL was elevated compared with HC in a majority of neurological conditions studied. Highest levels were observed in cognitively impaired HIV-positive individuals (iHIV), amyotrophic lateral sclerosis, frontotemporal dementia (FTD), and Huntington disease. In 33.3% of diagnoses, including HC, multiple sclerosis, Alzheimer disease (AD), and Parkinson disease (PD), cNfL was higher in men than women. The cNfL increased with age in HC and a majority of neurological conditions, although the association was strongest in HC. The cNfL overlapped in most clinically similar diagnoses except for FTD and iHIV, which segregated from other dementias, and PD, which segregated from atypical parkinsonian syndromes. CONCLUSIONS AND RELEVANCE: These data support the use of cNfL as a biomarker of neuroaxonal damage and indicate that age-specific and sex-specific (and in some cases disease-specific) reference values may be needed. The cNfL has potential to assist the differentiation of FTD from AD and PD from atypical parkinsonian syndromes.

15.
Ann Clin Transl Neurol ; 6(5): 863-872, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31139684

RESUMEN

OBJECTIVE: Diagnosis of frontotemporal dementia (FTD) is complicated by the overlap of clinical symptoms with other dementia disorders. Development of robust fluid biomarkers is critical to improve the diagnostic work-up of FTD. METHODS: CSF concentrations of placental growth factor (PlGF) were measured in the discovery cohort including patients with FTD (n = 27), Alzheimer disease (AD) dementia (n = 75), DLB or PDD (n = 47), subcortical vascular dementia (VaD, n = 33), mild cognitive impairment that later converted to AD (MCI-AD, n = 34), stable MCI (sMCI, n = 62), and 50 cognitively healthy controls from the Swedish BioFINDER study. For validation, CSF PlGF was measured in additional independent cohort of FTD patients (n = 22) and controls (n = 18) from the Netherlands. RESULTS: In the discovery cohort, MCI, MCI-AD, AD dementia, DLB-PDD, VaD, and FTD patients all showed increased CSF levels of PlGF compared with controls (sMCI P = 0.019; MCI-AD P = 0.005; AD dementia, DLB-PDD, VaD, and FTD all P < 0.001). PlGF levels were 1.8-2.1-fold higher in FTD than in AD, DLB-PDD and VaD (all P < 0.001). PlGF distinguished with high accuracy FTD from controls and sMCI performing better than tau/Aß42 (AUC 0.954-0.996 versus 0.564-0.754, P < 0.001). A combination of PlGF, tau, and Aß42 (tau/Aß42/PlGF) was more accurate than tau/Aß42 when differentiating FTD from a group of other dementias (AUC 0.972 vs. 0.932, P < 0.01). Increased CSF levels of PlGF in FTD compared with controls were corroborated in the validation cohort. INTERPRETATION: CSF PlGF is increased in FTD compared with other dementia disorders, MCI, and healthy controls and might be useful as a diagnostic biomarker of FTD.


Asunto(s)
Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/fisiopatología , Factor de Crecimiento Placentario/líquido cefalorraquídeo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas tau/líquido cefalorraquídeo
16.
J Neurol Neurosurg Psychiatry ; 90(9): 997-1004, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31123142

RESUMEN

BACKGROUND: Semantic dementia (SD) is a neurodegenerative disorder characterised by progressive language problems falling within the clinicopathological spectrum of frontotemporal lobar degeneration (FTLD). The development of disease-modifying agents may be facilitated by the relative clinical and pathological homogeneity of SD, but we need robust monitoring biomarkers to measure their efficacy. In different FTLD subtypes, neurofilament light chain (NfL) is a promising marker, therefore we investigated the utility of cerebrospinal fluid (CSF) NfL in SD. METHODS: This large retrospective multicentre study compared cross-sectional CSF NfL levels of 162 patients with SD with 65 controls. CSF NfL levels of patients were correlated with clinical parameters (including survival), neuropsychological test scores and regional grey matter atrophy (including longitudinal data in a subset). RESULTS: CSF NfL levels were significantly higher in patients with SD (median: 2326 pg/mL, IQR: 1628-3593) than in controls (577 (446-766), p<0.001). Higher CSF NfL levels were moderately associated with naming impairment as measured by the Boston Naming Test (rs =-0.32, p=0.002) and with smaller grey matter volume of the parahippocampal gyri (rs =-0.31, p=0.004). However, cross-sectional CSF NfL levels were not associated with progression of grey matter atrophy and did not predict survival. CONCLUSION: CSF NfL is a promising biomarker in the diagnostic process of SD, although it has limited cross-sectional monitoring or prognostic abilities.


Asunto(s)
Demencia Frontotemporal/líquido cefalorraquídeo , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Anciano , Estudios de Casos y Controles , Estudios Transversales , Femenino , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/mortalidad , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen , Pruebas Neuropsicológicas , Modelos de Riesgos Proporcionales , Estudios Retrospectivos
17.
Ann Clin Transl Neurol ; 6(4): 698-707, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31019994

RESUMEN

OBJECTIVE: To identify novel CSF biomarkers in GRN-associated frontotemporal dementia (FTD) by proteomics using mass spectrometry (MS). METHODS: Unbiased MS was applied to CSF samples from 19 presymptomatic and 9 symptomatic GRN mutation carriers and 24 noncarriers. Protein abundances were compared between these groups. Proteins were then selected for validation if identified by ≥4 peptides and if fold change was ≤0.5 or ≥2.0. Validation and absolute quantification by parallel reaction monitoring (PRM), a high-resolution targeted MS method, was performed on an international cohort (n = 210) of presymptomatic and symptomatic GRN, C9orf72 and MAPT mutation carriers. RESULTS: Unbiased MS revealed 20 differentially abundant proteins between symptomatic mutation carriers and noncarriers and nine between symptomatic and presymptomatic carriers. Seven of these proteins fulfilled our criteria for validation. PRM analyses revealed that symptomatic GRN mutation carriers had significantly lower levels of neuronal pentraxin receptor (NPTXR), receptor-type tyrosine-protein phosphatase N2 (PTPRN2), neurosecretory protein VGF, chromogranin-A (CHGA), and V-set and transmembrane domain-containing protein 2B (VSTM2B) than presymptomatic carriers and noncarriers. Symptomatic C9orf72 mutation carriers had lower levels of NPTXR, PTPRN2, CHGA, and VSTM2B than noncarriers, while symptomatic MAPT mutation carriers had lower levels of NPTXR and CHGA than noncarriers. INTERPRETATION: We identified and validated five novel CSF biomarkers in GRN-associated FTD. Our results show that synaptic, secretory vesicle, and inflammatory proteins are dysregulated in the symptomatic stage and may provide new insights into the pathophysiology of genetic FTD. Further validation is needed to investigate their clinical applicability as diagnostic or monitoring biomarkers.


Asunto(s)
Biomarcadores/líquido cefalorraquídeo , Demencia Frontotemporal/líquido cefalorraquídeo , Demencia Frontotemporal/genética , Proteómica , Adulto , Anciano , Proteína C9orf72/genética , Estudios de Cohortes , Femenino , Heterocigoto , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Persona de Mediana Edad , Mutación/genética , Enfermedad de Pick/líquido cefalorraquídeo , Enfermedad de Pick/genética , Proteómica/métodos
18.
Neurobiol Aging ; 76: 115-124, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30711674

RESUMEN

In genetic frontotemporal dementia, cross-sectional studies have identified profiles of presymptomatic neuroanatomical loss for C9orf72 repeat expansion, MAPT, and GRN mutations. In this study, we characterize longitudinal gray matter (GM) and white matter (WM) brain changes in presymptomatic frontotemporal dementia. We included healthy carriers of C9orf72 repeat expansion (n = 12), MAPT (n = 15), GRN (n = 33) mutations, and related noncarriers (n = 53), that underwent magnetic resonance imaging at baseline and 2-year follow-up. We analyzed cross-sectional baseline, follow-up, and longitudinal GM and WM changes using voxel-based morphometry and cortical thickness analysis in SPM and tract-based spatial statistics in FSL. Compared with noncarriers, C9orf72 repeat expansion carriers showed lower GM volume in the cerebellum and insula, and WM differences in the anterior thalamic radiation, at baseline and follow-up. MAPT mutation carriers showed emerging GM temporal lobe changes and longitudinal WM degeneration of the uncinate fasciculus. GRN mutation carriers did not show presymptomatic neurodegeneration. This study shows distinct presymptomatic cross-sectional and longitudinal patterns of GM and WM changes across C9orf72 repeat expansion, MAPT, and GRN mutation carriers compared with noncarriers.


Asunto(s)
Imagen de Difusión Tensora , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Neuroimagen , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Adulto , Anciano , Proteína C9orf72/genética , Estudios Transversales , Expansión de las Repeticiones de ADN/genética , Femenino , Demencia Frontotemporal/patología , Heterocigoto , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Mutación , Progranulinas/genética , Proteínas tau/genética
19.
J Neurol Neurosurg Psychiatry ; 90(4): 412-423, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30361298

RESUMEN

The frontotemporal dementia (FTD) spectrum is a heterogeneous group of neurodegenerative syndromes with overlapping clinical, molecular and pathological features, all of which challenge the design of clinical trials in these conditions. To date, no pharmacological interventions have been proven effective in significantly modifying the course of these disorders. This study critically reviews the construct and methodology of previously published randomised controlled trials (RCTs) in FTD spectrum disorders in order to identify limitations and potential reasons for negative results. Moreover, recommendations based on the identified gaps are elaborated in order to guide future clinical trial design. A systematic literature review was carried out and presented in conformity with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. A total of 23 RCTs in cohorts with diagnoses of behavioural and language variants of FTD, corticobasal syndrome and progressive supranuclear palsy syndrome were identified out of the 943 citations retrieved and were included in the qualitative review. Most studies identified were early-phase clinical trials that were small in size, short in duration and frequently underpowered. Diagnoses of populations enrolled in clinical trials were based on clinical presentation and rarely included precision-medicine tools, such as genetic and molecular testing. Uniformity and standardisation of research outcomes in the FTD spectrum are essential. Several elements should be carefully considered and planned in future clinical trials. We anticipate that precision-medicine approaches will be crucial to adequately address heterogeneity in the FTD spectrum research.


Asunto(s)
Demencia Frontotemporal/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto , Parálisis Supranuclear Progresiva/terapia , Degeneración Lobar Frontotemporal/terapia , Humanos , Evaluación de Resultado en la Atención de Salud , Estándares de Referencia , Proyectos de Investigación
20.
Neurobiol Aging ; 74: 225-233, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30497016

RESUMEN

Knowledge about the molecular mechanisms driving Alzheimer's disease (AD) is still limited. To learn more about AD biology, we performed whole transcriptome sequencing on the hippocampus of 20 AD cases and 10 age- and sex-matched cognitively healthy controls. We observed 2716 differentially expressed genes, of which 48% replicated in a second data set of 84 AD cases and 33 controls. We used an integrative network-based approach for combining transcriptomic and protein-protein interaction data to find differentially expressed gene modules that may reflect key processes in AD biology. A total of 735 differentially expressed genes were clustered into 33 modules, of which 82% replicated in a second data set, highlighting the robustness of this approach. These 27 modules were enriched for signal transduction, transport, response to stimulus, and several organic and cellular metabolic pathways. Ten modules interacted with previously described AD genes. Our study indicates that analyzing RNA-expression data based on annotated gene modules is more robust than on individual genes. We provide a comprehensive overview of the biological processes involved in AD, and the detected differentially expressed gene modules may provide a molecular basis for future research into mechanisms underlying AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Perfilación de la Expresión Génica , Hipocampo , Mapas de Interacción de Proteínas , Transducción de Señal/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/etiología , Femenino , Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , ARN/genética , ARN/metabolismo , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...