Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Epilepsia ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738647

RESUMEN

OBJECTIVE: To assess the possible effects of genetics on seizure outcome by estimating the familial aggregation of three outcome measures: seizure remission, history of ≥4 tonic-clonic seizures, and seizure control for individuals taking antiseizure medication. METHODS: We analyzed families containing multiple persons with epilepsy in four previously collected retrospective cohorts. Seizure remission was defined as being 5 and 10 years seizure-free at last observation. Total number of tonic-clonic seizures was dichotomized at <4 and ≥4 seizures. Seizure control in patients taking antiseizure medication was defined as no seizures for 1, 2, and 3 years. We used Bayesian generalized linear mixed-effects model (GLMM) to estimate the intraclass correlation coefficient (ICC) of the family-specific random effect, controlling for epilepsy type, age at epilepsy onset, and age at last data collection as fixed effects. We analyzed each cohort separately and performed meta-analysis using GLMMs. RESULTS: The combined cohorts included 3644 individuals with epilepsy from 1463 families. A history of ≥4 tonic-clonic seizures showed strong familial aggregation in three separate cohorts and meta-analysis (ICC .28, 95% confidence interval [CI] .21-.35, Bayes factor 8 × 1016). Meta-analyses did not reveal significant familial aggregation of seizure remission (ICC .08, 95% CI .01-.17, Bayes factor 1.46) or seizure control for individuals taking antiseizure medication (ICC .13, 95% CI 0-.35, Bayes factor 0.94), with heterogeneity among cohorts. SIGNIFICANCE: A history of ≥4 tonic-clonic seizures aggregated strongly in families, suggesting a genetic influence, whereas seizure remission and seizure control for individuals taking antiseizure medications did not aggregate consistently in families. Different seizure outcomes may have different underlying biology and risk factors. These findings should inform the future molecular genetic studies of seizure outcomes.

2.
bioRxiv ; 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38328212

RESUMEN

UBA5 encodes for the E1 enzyme of the UFMylation cascade, which plays an essential role in ER homeostasis. The clinical phenotypes of UBA5-associated encephalopathy include developmental delays, epilepsy and intellectual disability. To date, there is no humanized neuronal model to study the cellular and molecular consequences of UBA5 pathogenic variants. We developed and characterized patient-derived cortical organoid cultures and identified defects in GABAergic interneuron development. We demonstrated aberrant neuronal firing and microcephaly phenotypes in patient-derived organoids. Mechanistically, we show that ER homeostasis is perturbed along with exacerbated unfolded protein response pathway in cells and organoids expressing UBA5 pathogenic variants. We also assessed two gene expression modalities that augmented UBA5 expression to rescue aberrant molecular and cellular phenotypes. Our study provides a novel humanized model that allows further investigations of UBA5 variants in the brain and highlights novel systemic approaches to alleviate cellular aberrations for this rare, developmental disorder.

3.
Epilepsia Open ; 9(2): 758-764, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38129960

RESUMEN

About 50% of individuals with developmental and epileptic encephalopathies (DEEs) are unsolved following genetic testing. Deep intronic variants, defined as >100 bp from exon-intron junctions, contribute to disease by affecting the splicing of mRNAs in clinically relevant genes. Identifying deep intronic pathogenic variants is challenging and resource intensive, and interpretation is difficult due to limited functional annotations. We aimed to identify deep intronic variants in individuals suspected to have unsolved single gene DEEs. In a research cohort of unsolved cases of DEEs, we searched for children with a DEE syndrome predominantly caused by variants in specific genes in >80% of described cases. We identified two children with Dravet syndrome and one individual with classic lissencephaly. Multiple sequencing and bioinformatics strategies were employed to interrogate intronic regions in SCN1A and PAFAH1B1. A novel de novo deep intronic 12 kb deletion in PAFAH1B1 was identified in the individual with lissencephaly. We showed experimentally that the deletion disrupts mRNA splicing, which results in partial intron retention after exon 2 and disruption of the highly conserved LisH motif. We demonstrate that targeted interrogation of deep intronic regions using multiple genomics technologies, coupled with functional analysis, can reveal hidden causes of unsolved monogenic DEE syndromes. PLAIN LANGUAGE SUMMARY: Deep intronic variants can cause disease by affecting the splicing of mRNAs in clinically relevant genes. A deep intronic deletion that caused abnormal splicing of the PAFAH1B1 gene was identified in a patient with classic lissencephaly. Our findings reinforce that targeted interrogation of deep intronic regions and functional analysis can reveal hidden causes of unsolved epilepsy syndromes.


Asunto(s)
Lisencefalias Clásicas y Heterotopias Subcorticales en Banda , Epilepsias Mioclónicas , Niño , Humanos , Intrones/genética , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Pruebas Genéticas , Mutación , Epilepsias Mioclónicas/genética
4.
Genet Med ; 25(11): 100950, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37551667

RESUMEN

PURPOSE: Coffin-Siris and Nicolaides-Baraitser syndromes are recognizable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort. METHODS: Clinical symptoms for 41 novel and 24 previously published affected individuals were analyzed using the Human Phenotype Ontology. For genotype-phenotype correlations, molecular data were standardized and grouped into non-truncating and likely gene-disrupting (LGD) variants. Missense variant protein expression and BAF-subunit interactions were examined using 3D protein modeling, co-immunoprecipitation, and proximity-ligation assays. RESULTS: Neurodevelopmental delay with intellectual disability, muscular hypotonia, and behavioral disorders were the major manifestations. Clinical hallmarks of BAFopathies were rare. Clinical presentation differed significantly, with LGD variants being predominantly inherited and associated with mildly reduced or normal cognitive development, whereas non-truncating variants were mostly de novo and presented with severe developmental delay. These distinct manifestations and non-truncating variant clustering in functional domains suggest different pathomechanisms. In vitro testing showed decreased protein expression for N-terminal missense variants similar to LGD. CONCLUSION: This study improved SMARCC2 variant classification and identified discernible SMARCC2-associated phenotypes for LGD and non-truncating variants, which were distinct from other BAFopathies. The pathomechanism of most non-truncating variants has yet to be investigated.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Micrognatismo , Trastornos del Neurodesarrollo , Humanos , Anomalías Múltiples/genética , Cara , Micrognatismo/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Facies , Fenotipo , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
5.
bioRxiv ; 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37205386

RESUMEN

Pathogenic loss-of-function SCN1A variants cause a spectrum of seizure disorders. We previously identified variants in individuals with SCN1A -related epilepsy that fall in or near a poison exon (PE) in SCN1A intron 20 (20N). We hypothesized these variants lead to increased PE inclusion, which introduces a premature stop codon, and, therefore, reduced abundance of the full-length SCN1A transcript and Na v 1.1 protein. We used a splicing reporter assay to interrogate PE inclusion in HEK293T cells. In addition, we used patient-specific induced pluripotent stem cells (iPSCs) differentiated into neurons to quantify 20N inclusion by long and short-read sequencing and Na v 1.1 abundance by western blot. We performed RNA-antisense purification with mass spectrometry to identify RNA-binding proteins (RBPs) that could account for the aberrant PE splicing. We demonstrate that variants in/near 20N lead to increased 20N inclusion by long-read sequencing or splicing reporter assay and decreased Na v 1.1 abundance. We also identified 28 RBPs that differentially interact with variant constructs compared to wild-type, including SRSF1 and HNRNPL. We propose a model whereby 20N variants disrupt RBP binding to splicing enhancers (SRSF1) and suppressors (HNRNPL), to favor PE inclusion. Overall, we demonstrate that SCN1A 20N variants cause haploinsufficiency and SCN1A -related epilepsies. This work provides insights into the complex control of RBP-mediated PE alternative splicing, with broader implications for PE discovery and identification of pathogenic PE variants in other genetic conditions.

6.
Epilepsia ; 64(5): 1351-1367, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36779245

RESUMEN

OBJECTIVE: WWOX is an autosomal recessive cause of early infantile developmental and epileptic encephalopathy (WWOX-DEE), also known as WOREE (WWOX-related epileptic encephalopathy). We analyzed the epileptology and imaging features of WWOX-DEE, and investigated genotype-phenotype correlations, particularly with regard to survival. METHODS: We studied 13 patients from 12 families with WWOX-DEE. Information regarding seizure semiology, comorbidities, facial dysmorphisms, and disease outcome were collected. Electroencephalographic (EEG) and brain magnetic resonance imaging (MRI) data were analyzed. Pathogenic WWOX variants from our cohort and the literature were coded as either null or missense, allowing individuals to be classified into one of three genotype classes: (1) null/null, (2) null/missense, (3) missense/missense. Differences in survival outcome were estimated using the Kaplan-Meier method. RESULTS: All patients experienced multiple seizure types (median onset = 5 weeks, range = 1 day-10 months), the most frequent being focal (85%), epileptic spasms (77%), and tonic seizures (69%). Ictal EEG recordings in six of 13 patients showed tonic (n = 5), myoclonic (n = 2), epileptic spasms (n = 2), focal (n = 1), and migrating focal (n = 1) seizures. Interictal EEGs demonstrated slow background activity with multifocal discharges, predominantly over frontal or temporo-occipital regions. Eleven of 13 patients had a movement disorder, most frequently dystonia. Brain MRIs revealed severe frontotemporal, hippocampal, and optic atrophy, thin corpus callosum, and white matter signal abnormalities. Pathogenic variants were located throughout WWOX and comprised both missense and null changes including five copy number variants (four deletions, one duplication). Survival analyses showed that patients with two null variants are at higher mortality risk (p-value = .0085, log-rank test). SIGNIFICANCE: Biallelic WWOX pathogenic variants cause an early infantile developmental and epileptic encephalopathy syndrome. The most common seizure types are focal seizures and epileptic spasms. Mortality risk is associated with mutation type; patients with biallelic null WWOX pathogenic variants have significantly lower survival probability compared to those carrying at least one presumed hypomorphic missense pathogenic variant.


Asunto(s)
Encefalopatías , Síndromes Epilépticos , Espasmos Infantiles , Humanos , Encefalopatías/genética , Espasmos Infantiles/diagnóstico por imagen , Espasmos Infantiles/genética , Espasmos Infantiles/complicaciones , Convulsiones/diagnóstico por imagen , Convulsiones/genética , Convulsiones/complicaciones , Encéfalo/patología , Síndromes Epilépticos/complicaciones , Electroencefalografía , Espasmo , Oxidorreductasa que Contiene Dominios WW/genética , Oxidorreductasa que Contiene Dominios WW/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
7.
Genet Med ; 25(2): 100333, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36480001

RESUMEN

PURPOSE: Sub-Saharan Africa bears the highest burden of epilepsy worldwide. A presumed proportion is genetic, but this etiology is buried under the burden of infections and perinatal insults in a setting of limited awareness and few options for testing. Children with developmental and epileptic encephalopathies (DEEs) are most severely affected by this diagnostic gap in Africa, because the rate of actionable findings is highest in DEE-associated genes. METHODS: We tested 234 genetically naive South African children diagnosed with/possible DEE using gene panels, exome sequencing, and chromosomal microarray. Statistical comparison of electroclinical features in children with and children without candidate variants was performed to identify characteristics most likely predictive of a positive genetic finding. RESULTS: Of the 41 (of 234) children with likely/pathogenic variants, 26 had variants supporting precision therapy. Multivariate regression modeling highlighted neonatal or infantile-onset seizures and movement abnormalities as predictive of a positive genetic finding. We used this, coupled with an emphasis on precision medicine outcomes, to propose the pragmatic "Think-Genetics" strategy for early recognition of a possible genetic etiology. CONCLUSION: Our findings emphasize the importance of an early genetic diagnosis in DEE. We designed the Think-Genetics strategy for early recognition, appropriate interim management, and genetic testing for DEE in resource-constrained settings.


Asunto(s)
Epilepsia , Medicina de Precisión , Niño , Recién Nacido , Humanos , Configuración de Recursos Limitados , Epilepsia/diagnóstico , Epilepsia/epidemiología , Epilepsia/genética , Pruebas Genéticas , África
8.
Genome Biol ; 23(1): 257, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517892

RESUMEN

Expansions of short tandem repeats (STRs) cause many rare diseases. Expansion detection is challenging with short-read DNA sequencing data since supporting reads are often mapped incorrectly. Detection is particularly difficult for "novel" STRs, which include new motifs at known loci or STRs absent from the reference genome. We developed STRling to efficiently count k-mers to recover informative reads and call expansions at known and novel STR loci. STRling is sensitive to known STR disease loci, has a low false discovery rate, and resolves novel STR expansions to base-pair position accuracy. It is fast, scalable, open-source, and available at: github.com/quinlan-lab/STRling .


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Repeticiones de Microsatélite , Análisis de Secuencia de ADN
10.
Genet Med ; 24(12): 2464-2474, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36214804

RESUMEN

PURPOSE: KLHL20 is part of a CUL3-RING E3 ubiquitin ligase involved in protein ubiquitination. KLHL20 functions as the substrate adaptor that recognizes substrates and mediates the transfer of ubiquitin to the substrates. Although KLHL20 regulates neurite outgrowth and synaptic development in animal models, a role in human neurodevelopment has not yet been described. We report on a neurodevelopmental disorder caused by de novo missense variants in KLHL20. METHODS: Patients were ascertained by the investigators through Matchmaker Exchange. Phenotyping of patients with de novo missense variants in KLHL20 was performed. RESULTS: We studied 14 patients with de novo missense variants in KLHL20, delineating a genetic syndrome with patients having mild to severe intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, hyperactivity, and subtle dysmorphic facial features. We observed a recurrent de novo missense variant in 11 patients (NM_014458.4:c.1069G>A p.[Gly357Arg]). The recurrent missense and the 3 other missense variants all clustered in the Kelch-type ß-propeller domain of the KLHL20 protein, which shapes the substrate binding surface. CONCLUSION: Our findings implicate KLHL20 in a neurodevelopmental disorder characterized by intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, and hyperactivity.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Discapacidad Intelectual , Convulsiones Febriles , Niño , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Trastorno del Espectro Autista/genética , Discapacidades del Desarrollo , Epilepsia/genética , Discapacidad Intelectual/genética , Mutación Missense/genética , Ubiquitina-Proteína Ligasas/genética
11.
Genet Med ; 24(11): 2240-2248, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35997716

RESUMEN

PURPOSE: Postzygotic (somatic) variants in the mTOR pathway genes cause a spectrum of distinct developmental abnormalities. Accurate classification of somatic variants in this group of disorders is crucial for affected individuals and their families. METHODS: The ClinGen Brain Malformation Variant Curation Expert Panel was formed to curate somatic variants associated with developmental brain malformations. We selected the genes AKT3, MTOR, PIK3CA, and PIK3R2 as the first set of genes to provide additional specifications to the 2015 American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) sequence variant interpretation guidelines, which currently focus solely on germline variants. RESULTS: A total of 24 of the original 28 ACMG/AMP criteria required modification. Several modifications used could be applied to other genes and disorders in which somatic variants play a role: 1) using variant allele fraction differences as evidence that somatic mutagenesis occurred as a proxy for de novo variation, 2) incorporating both somatic and germline evidence, and 3) delineating phenotype on the basis of variable tissue expression. CONCLUSION: We have established a framework for rigorous interpretation of somatic mosaic variants, addressing issues unique to somatic variants that will be applicable to many genes and conditions.


Asunto(s)
Encéfalo , Anomalías Congénitas , Variación Genética , Genoma Humano , Humanos , Encéfalo/patología , Fosfatidilinositol 3-Quinasa Clase I/genética , Anomalías Congénitas/genética , Pruebas Genéticas , Variación Genética/genética , Mutación , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética
12.
Genet Med ; 24(9): 1952-1966, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35916866

RESUMEN

PURPOSE: ZMYND8 encodes a multidomain protein that serves as a central interactive hub for coordinating critical roles in transcription regulation, chromatin remodeling, regulation of super-enhancers, DNA damage response and tumor suppression. We delineate a novel neurocognitive disorder caused by variants in the ZMYND8 gene. METHODS: An international collaboration, exome sequencing, molecular modeling, yeast two-hybrid assays, analysis of available transcriptomic data and a knockdown Drosophila model were used to characterize the ZMYND8 variants. RESULTS: ZMYND8 variants were identified in 11 unrelated individuals; 10 occurred de novo and one suspected de novo; 2 were truncating, 9 were missense, of which one was recurrent. The disorder is characterized by intellectual disability with variable cardiovascular, ophthalmologic and minor skeletal anomalies. Missense variants in the PWWP domain of ZMYND8 abolish the interaction with Drebrin and missense variants in the MYND domain disrupt the interaction with GATAD2A. ZMYND8 is broadly expressed across cell types in all brain regions and shows highest expression in the early stages of brain development. Neuronal knockdown of the DrosophilaZMYND8 ortholog results in decreased habituation learning, consistent with a role in cognitive function. CONCLUSION: We present genomic and functional evidence for disruption of ZMYND8 as a novel etiology of syndromic intellectual disability.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Encéfalo/metabolismo , Regulación de la Expresión Génica , Humanos , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Dominios Proteicos , Secuenciación del Exoma
13.
EBioMedicine ; 81: 104130, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35780567

RESUMEN

BACKGROUND: Prior studies have revealed remarkable phenotypic heterogeneity in KCNQ2-related disorders, correlated with effects on biophysical features of heterologously expressed channels. Here, we assessed phenotypes and functional properties associated with KCNQ2 missense variants R144W, R144Q, and R144G. We also explored in vitro blockade of channels carrying R144Q mutant subunits by amitriptyline. METHODS: Patients were identified using the RIKEE database and through clinical collaborators. Phenotypes were collected by a standardized questionnaire. Functional and pharmacological properties of variant subunits were analyzed by whole-cell patch-clamp recordings. FINDINGS: Detailed clinical information on fifteen patients (14 novel and 1 previously published) was analyzed. All patients had developmental delay with prominent language impairment. R144Q patients were more severely affected than R144W patients. Infantile to childhood onset epilepsy occurred in 40%, while 67% of sleep-EEGs showed sleep-activated epileptiform activity. Ten patients (67%) showed autistic features. Activation gating of homomeric Kv7.2 R144W/Q/G channels was left-shifted, suggesting gain-of-function effects. Amitriptyline blocked channels containing Kv7.2 and Kv7.2 R144Q subunits. INTERPRETATION: Patients carrying KCNQ2 R144 gain-of-function variants have developmental delay with prominent language impairment, autistic features, often accompanied by infantile- to childhood-onset epilepsy and EEG sleep-activated epileptiform activity. The absence of neonatal seizures is a robust and important clinical differentiator between KCNQ2 gain-of-function and loss-of-function variants. The Kv7.2/7.3 channel blocker amitriptyline might represent a targeted treatment. FUNDING: Supported by FWO, GSKE, KCNQ2-Cure, Jack Pribaz Foundation, European Joint Programme on Rare Disease 2020, the Italian Ministry for University and Research, the Italian Ministry of Health, the European Commission, the University of Antwerp, NINDS, and Chalk Family Foundation.


Asunto(s)
Trastorno Autístico , Epilepsia , Enfermedades del Recién Nacido , Trastornos del Desarrollo del Lenguaje , Amitriptilina , Mutación con Ganancia de Función , Humanos , Recién Nacido , Canal de Potasio KCNQ2/genética , Convulsiones
14.
Genes (Basel) ; 13(5)2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35627139

RESUMEN

Genetic epilepsy with febrile seizures plus (GEFS+) is an autosomal dominant disorder with febrile or afebrile seizures that exhibits phenotypic variability. Only a few variants in SCN1A have been previously characterized for GEFS+, in Latin American populations where studies on the genetic and phenotypic spectrum of GEFS+ are scarce. We evaluated members in two multi-generational Colombian Paisa families whose affected members present with classic GEFS+. Exome and Sanger sequencing were used to detect the causal variants in these families. In each of these families, we identified variants in SCN1A causing GEFS+ with incomplete penetrance. In Family 047, we identified a heterozygous variant (c.3530C > G; p.(Pro1177Arg)) that segregates with GEFS+ in 15 affected individuals. In Family 167, we identified a previously unreported variant (c.725A > G; p.(Gln242Arg)) that segregates with the disease in a family with four affected members. Both variants are located in a cytoplasmic loop region in SCN1A and based on our findings the variants are classified as pathogenic and likely pathogenic, respectively. Our results expand the genotypic and phenotypic spectrum associated with SCN1A variants and will aid in improving molecular diagnostics and counseling in Latin American and other populations.


Asunto(s)
Epilepsia , Convulsiones Febriles , Colombia , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Linaje , Convulsiones Febriles/complicaciones , Convulsiones Febriles/genética
15.
EBioMedicine ; 81: 104079, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35636315

RESUMEN

BACKGROUND: The epilepsies are highly heritable conditions that commonly follow complex inheritance. While monogenic causes have been identified in rare familial epilepsies, most familial epilepsies remain unsolved. We aimed to determine (1) whether common genetic variation contributes to familial epilepsy risk, and (2) whether that genetic risk is enriched in familial compared with non-familial (sporadic) epilepsies. METHODS: Using common variants derived from the largest epilepsy genome-wide association study, we calculated polygenic risk scores (PRS) for patients with familial epilepsy (n = 1,818 from 1,181 families), their unaffected relatives (n = 771), sporadic patients (n = 1,182), and population controls (n = 15,929). We also calculated separate PRS for genetic generalised epilepsy (GGE) and focal epilepsy. Statistical analyses used mixed-effects regression models to account for familial relatedness, sex, and ancestry. FINDINGS: Patients with familial epilepsies had higher epilepsy PRS compared to population controls (OR 1·20, padj = 5×10-9), sporadic patients (OR 1·11, padj = 0.008), and their own unaffected relatives (OR 1·12, padj = 0.01). The top 1% of the PRS distribution was enriched 3.8-fold for individuals with familial epilepsy when compared to the lowest decile (padj = 5×10-11). Familial PRS enrichment was consistent across epilepsy type; overall, polygenic risk was greatest for the GGE clinical group. There was no significant PRS difference in familial cases with established rare variant genetic etiologies compared to unsolved familial cases. INTERPRETATION: The aggregate effects of common genetic variants, measured as polygenic risk scores, play an important role in explaining why some families develop epilepsy, why specific family members are affected while their relatives are not, and why families manifest specific epilepsy types. Polygenic risk contributes to the complex inheritance of the epilepsies, including in individuals with a known genetic etiology. FUNDING: National Health and Medical Research Council of Australia, National Institutes of Health, American Academy of Neurology, Thomas B and Jeannette E Laws McCabe Fund, Mirowski Family Foundation.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Síndromes Epilépticos , Epilepsia/genética , Epilepsia Generalizada/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Herencia Multifactorial/genética
16.
Brain ; 145(7): 2301-2312, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35373813

RESUMEN

Pathogenic variants in A Disintegrin And Metalloproteinase (ADAM) 22, the postsynaptic cell membrane receptor for the glycoprotein leucine-rich repeat glioma-inactivated protein 1 (LGI1), have been recently associated with recessive developmental and epileptic encephalopathy. However, so far, only two affected individuals have been described and many features of this disorder are unknown. We refine the phenotype and report 19 additional individuals harbouring compound heterozygous or homozygous inactivating ADAM22 variants, of whom 18 had clinical data available. Additionally, we provide follow-up data from two previously reported cases. All affected individuals exhibited infantile-onset, treatment-resistant epilepsy. Additional clinical features included moderate to profound global developmental delay/intellectual disability (20/20), hypotonia (12/20) and delayed motor development (19/20). Brain MRI findings included cerebral atrophy (13/20), supported by post-mortem histological examination in patient-derived brain tissue, cerebellar vermis atrophy (5/20), and callosal hypoplasia (4/20). Functional studies in transfected cell lines confirmed the deleteriousness of all identified variants and indicated at least three distinct pathological mechanisms: (i) defective cell membrane expression; (ii) impaired LGI1-binding; and/or (iii) impaired interaction with the postsynaptic density protein PSD-95. We reveal novel clinical and molecular hallmarks of ADAM22 deficiency and provide knowledge that might inform clinical management and early diagnostics.


Asunto(s)
Proteínas ADAM , Encefalopatías , Epilepsia Refractaria , Proteínas del Tejido Nervioso , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Atrofia , Encefalopatías/genética , Homólogo 4 de la Proteína Discs Large , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
17.
Sci Rep ; 12(1): 5386, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354845

RESUMEN

Polynucleotide Kinase-Phosphatase (PNKP) is a bifunctional enzyme that possesses both DNA 3'-phosphatase and DNA 5'-kinase activities, which are required for processing termini of single- and double-strand breaks generated by reactive oxygen species (ROS), ionizing radiation and topoisomerase I poisons. Even though PNKP is central to DNA repair, there have been no reports linking PNKP mutations in a Microcephaly, Seizures, and Developmental Delay (MSCZ) patient to cancer. Here, we characterized the biochemical significance of 2 germ-line point mutations in the PNKP gene of a 3-year old male with MSCZ who presented with a high-grade brain tumor (glioblastoma multiforme) within the cerebellum. Functional and biochemical studies demonstrated these PNKP mutations significantly diminished DNA kinase/phosphatase activities, altered its cellular distribution, caused defective repair of DNA single/double stranded breaks, and were associated with a higher propensity for oncogenic transformation. Our findings indicate that specific PNKP mutations may contribute to tumor initiation within susceptible cells in the CNS by limiting DNA damage repair and increasing rates of spontaneous mutations resulting in pediatric glioma associated driver mutations such as ATRX and TP53.


Asunto(s)
Neoplasias Encefálicas , Microcefalia , Neoplasias Encefálicas/genética , Niño , Preescolar , Reparación del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Humanos , Masculino , Microcefalia/genética , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Convulsiones/genética
18.
Epilepsia ; 63(4): 974-991, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35179230

RESUMEN

OBJECTIVE: Epilepsy is common in patients with PIGN diseases due to biallelic variants; however, limited epilepsy phenotyping data have been reported. We describe the epileptology of PIGN encephalopathy. METHODS: We recruited patients with epilepsy due to biallelic PIGN variants and obtained clinical data regarding age at seizure onset/offset and semiology, development, medical history, examination, electroencephalogram, neuroimaging, and treatment. Seizure and epilepsy types were classified. RESULTS: Twenty six patients (13 female) from 26 families were identified, with mean age 7 years (range = 1 month to 21 years; three deceased). Abnormal development at seizure onset was present in 25 of 26. Developmental outcome was most frequently profound (14/26) or severe (11/26). Patients presented with focal motor (12/26), unknown onset motor (5/26), focal impaired awareness (1/26), absence (2/26), myoclonic (2/26), myoclonic-atonic (1/26), and generalized tonic-clonic (2/26) seizures. Twenty of 26 were classified as developmental and epileptic encephalopathy (DEE): 55% (11/20) focal DEE, 30% (6/20) generalized DEE, and 15% (3/20) combined DEE. Six had intellectual disability and epilepsy (ID+E): two generalized and four focal epilepsy. Mean age at seizure onset was 13 months (birth to 10 years), with a lower mean onset in DEE (7 months) compared with ID+E (33 months). Patients with DEE had drug-resistant epilepsy, compared to 4/6 ID+E patients, who were seizure-free. Hyperkinetic movement disorder occurred in 13 of 26 patients. Twenty-seven of 34 variants were novel. Variants were truncating (n = 7), intronic and predicted to affect splicing (n = 7), and missense or inframe indels (n = 20, of which 11 were predicted to affect splicing). Seven variants were recurrent, including p.Leu311Trp in 10 unrelated patients, nine with generalized seizures, accounting for nine of the 11 patients in this cohort with generalized seizures. SIGNIFICANCE: PIGN encephalopathy is a complex autosomal recessive disorder associated with a wide spectrum of epilepsy phenotypes, typically with substantial profound to severe developmental impairment.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Discapacidad Intelectual , Electroencefalografía , Epilepsia/diagnóstico por imagen , Epilepsia/genética , Femenino , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/genética , Fenotipo , Convulsiones/genética
19.
HGG Adv ; 3(1): 100072, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35047857

RESUMEN

We report seven affected individuals from six families with a recurrent, de novo variant in the ARPC4 gene (c.472C>T [p.Arg158Cys (GenBank: NM_005718.4)]). Core features in affected individuals include microcephaly, mild motor delays, and significant speech impairment. ARPC4 is a core subunit of the actin-related protein (ARP2/3) complex, which catalyzes the formation of F-actin networks. We show that the recurrent ARPC4 missense change is associated with a decreased amount of F-actin in cells from two affected individuals. Taken together, our results implicate heterozygous ARPC4 missense variants as a cause of neurodevelopmental disorders and microcephaly.

20.
Artículo en Inglés | MEDLINE | ID: mdl-34887310

RESUMEN

Genetic mosaicism is the state in which there are two or more different sets of cells in a single individual because of one or more postzygotic mutations, and its importance in clinical genetics has long been recognized (Hall, Am J Hum Genet 43: 355 [1988]). In this Perspective, a paper in this special issue on mosaicism from Cook et al. (Cold Spring Harb Mol Case Studies 7: a006125 [2021]) is discussed.


Asunto(s)
Mosaicismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...