Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Res ; 1834: 148888, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548249

RESUMEN

A Disintegrin And Metalloprotease 10 (ADAM10), is able to control several important physiopathological processes through the shedding of a large number of protein substrates. Although ADAM10 plays a crucial role in the central nervous system (CNS) development and function, its protein distribution in the CNS has not been fully addressed. Here, we described the regional and cellular ADAM10 protein expression in C57BL/6 mice examined by immunofluorescence 1) throughout the adult mouse brain, cerebellum and spinal cord in vivo and 2) in different cell types as neurons, astrocytes, oligodendrocytes and microglia in vitro. We observed ADAM10 expression through the whole CNS, with a strong expression in the hippocampus, in the hypothalamus and in the cerebral and piriform cortex in the brain, in the Purkinje and in granular cell layers in the cerebellum and in the spinal cord to a lower extent. In vivo, ADAM10 protein expression was mainly found in neurons and in some oligodendroglial cell populations. However, in primary cultures we observed ADAM10 expression in neurons, oligodendrocytes, astrocytes and microglia. Interestingly, ADAM10 was not only found in the membrane but also in cytoplasmic vesicles and in the nucleus of primary cultured cells. Overall, this work highlights a wide distribution of ADAM10 throughout the CNS. The nuclear localization of ADAM10, probably due to its intracellular domain, emphasizes its role in cell signalling in physiological and pathological conditions. Further investigations are required to better elucidate the role of ADAM10 in glial cells.


Asunto(s)
Proteína ADAM10 , Sistema Nervioso Central , Proteínas de la Membrana , Ratones Endogámicos C57BL , Neuronas , Médula Espinal , Animales , Proteína ADAM10/metabolismo , Neuronas/metabolismo , Ratones , Proteínas de la Membrana/metabolismo , Sistema Nervioso Central/metabolismo , Médula Espinal/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Astrocitos/metabolismo , Microglía/metabolismo , Células Cultivadas , Oligodendroglía/metabolismo , Masculino , Encéfalo/metabolismo , Cerebelo/metabolismo
2.
Neuroscience ; 455: 240-250, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33246058

RESUMEN

Demyelination is a well-known pathological process in CNS disorders such as multiple sclerosis (MS). It provokes progressive axonal degeneration and functional impairments and no efficient therapy is presently available to combat such insults. Recently, we have shown that etazolate, a pyrazolopyridine compound and an α-secretase activator, was able to promote myelin protection and remyelination after cuprizone (CPZ)-induced acute demyelination in C57Bl/6 mice. In continuation of this work, here we have further investigated the effects of etazolate treatment after acute cuprizone-induced demyelination at the molecular level (expression of myelin genes Plp, Mbp and Mag and inflammatory markers Il-1ß, Tnf-α) and at the functional level (locomotor and spatial memory skills) in vivo. To this end, we have employed two protocols which consists of administering etazolate (10 mg/kg/d) for a period of 2 weeks either during (Protocol #1) or after (Protocol #2) 5-weeks of CPZ-induced demyelination. At the molecular level, we observed that CPZ intoxication altered inflammatory and myelin gene expression and it was not restored with either of the etazolate treatment protocols. At the functional level, the locomotor activity was impaired after 3-weeks of CPZ intoxication (Protocol #1) and our data indicates a modest but beneficial effect of etazolate treatment. Spatial memory evaluated was not affected either by CPZ intake or etazolate treatment in both protocols. Altogether, this study shows that the beneficial effect of etazolate upon demyelination does not occur at the gene expression level at the time points studied. Furthermore, our results also highlight the difficulty in revealing functional sequelae following CPZ intoxication.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Etazolato , Inhibidores de Fosfodiesterasa , Remielinización , Animales , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Modelos Animales de Enfermedad , Etazolato/farmacología , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina , Oligodendroglía , Inhibidores de Fosfodiesterasa/farmacología
4.
Mol Neurobiol ; 56(6): 4231-4248, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30298339

RESUMEN

Increasing findings suggest that demyelination may play an important role in the pathophysiology of brain injury, but the exact mechanisms underlying such damage are not well known. Mechanical tensile strain of brain tissue occurs during traumatic brain injury. Several studies have investigated the cellular and molecular events following a static tensile strain of physiological magnitude on individual cells such as oligodendrocytes. However, the pathobiological impact of high-magnitude mechanical strain on oligodendrocytes and myelinated fibers remains under investigated. In this study, we reported that an applied mechanical tensile strain of 30% on mouse organotypic culture of cerebellar slices induced axonal injury and elongation of paranodal junctions, two hallmarks of brain trauma. It was also able to activate MAPK-ERK1/2 signaling, a stretch-induced responsive pathway. The same tensile strain applied to mouse oligodendrocytes in primary culture induced a profound damage to cell morphology, partial cell loss, and a decrease of myelin protein expression. The lower tensile strain of 20% also caused cell loss and the remaining oligodendrocytes appeared retracted with decreased myelin protein expression. Finally, high-magnitude tensile strain applied to 158N oligodendroglial cells altered myelin protein expression, dampened MAPK-ERK1/2 and MAPK-p38 signaling, and enhanced the production of reactive oxygen species. The latter was accompanied by increased protein oxidation and an alteration of anti-oxidant defense that was strain magnitude-dependent. In conclusion, mechanical stretch of high magnitude provokes axonal injury with significant alterations in oligodendrocyte biology that could initiate demyelination.


Asunto(s)
Axones/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Transducción de Señal , Estrés Mecánico , Animales , Antioxidantes/metabolismo , Adhesión Celular , Línea Celular , Forma de la Célula , Cerebelo/patología , Regulación de la Expresión Génica , Glutatión/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Resistencia a la Tracción
5.
J Neurosci Methods ; 311: 385-393, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30253198

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) induces significant cognitive deficits correlated with white matter injury, involving both axonal and myelin damage. Several models of TBI ex vivo are available to mimic focal impact on brain tissue. However, none of them addressed the study of trauma-induced myelin damage. NEW METHOD: The aim of this study was to set up a novel ex vivo weight-drop model on organotypic cultures obtained from mouse cerebellum, a highly myelinated structure, in order to study the temporal evolution of cerebellar lesion and demyelination. The extent of injury was measured by propidium iodide (PI) fluorescence and demyelination was evaluated by loss of GFP-fluorescence in cerebellar slices from PLP-eGFP mice. RESULTS: Live imaging of slices showed an increase of PI-fluorescence and a significant loss of GFP-fluorescence at 6 h, 24 h and 72 h post-injury. At the impact site, we observed a loss of Purkinje cells and myelin sheaths with a marked loss of myelin protein MBP at 72 h following injury. Etazolate, a known protective compound, was able to reduce both the PI-fluorescence increase and the loss of GFP-fluorescence, emphasizing its protective effect on myelin loss. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: In line with the existing models of focal injury, we characterized trauma-induced cerebellar lesion with an increase of PI fluorescence by live imaging. Our findings describe a novel tool to study trauma-induced myelin damage in cerebellar slices and to test biomolecules of therapeutic interest for myelin protection.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Cerebelo/patología , Modelos Animales de Enfermedad , Vaina de Mielina/patología , Imagen Óptica/métodos , Células de Purkinje/patología , Animales , Proteínas Fluorescentes Verdes/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos/métodos , Propidio/análisis
6.
Proc Natl Acad Sci U S A ; 115(6): E1319-E1328, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29351992

RESUMEN

Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in xenobiotic metabolism. Plexiform neurofibromas (PNFs) can transform into malignant peripheral nerve sheath tumors (MPNSTs) that are resistant to existing therapies. These tumors are primarily composed of Schwann cells. In addition to neurofibromatosis type 1 (NF1) gene inactivation, further genetic lesions are required for malignant transformation. We have quantified the mRNA expression levels of AHR and its associated genes in 38 human samples. We report that AHR and the biosynthetic enzymes of its endogenous ligand are overexpressed in human biopsies of PNFs and MPNSTs. We also detect a strong nuclear AHR staining in MPNSTs. The inhibition of AHR by siRNA or antagonists, CH-223191 and trimethoxyflavone, induces apoptosis in human MPNST cells. Since AHR dysregulation is observed in these tumors, we investigate AHR involvement in Schwann cell physiology. Hence, we studied the role of AHR in myelin structure and myelin gene regulation in Ahr-/- mice during myelin development. AHR ablation leads to locomotion defects and provokes thinner myelin sheaths around the axons. We observe a dysregulation of myelin gene expression and myelin developmental markers in Ahr-/- mice. Interestingly, AHR does not directly bind to myelin gene promoters. The inhibition of AHR in vitro and in vivo increased ß-catenin levels and stimulated the binding of ß-catenin on myelin gene promoters. Taken together, our findings reveal an endogenous role of AHR in peripheral myelination and in peripheral nerve sheath tumors. Finally, we suggest a potential therapeutic approach by targeting AHR in nerve tumors.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Transformación Celular Neoplásica/patología , Regulación Neoplásica de la Expresión Génica , Vaina de Mielina/patología , Neoplasias de la Vaina del Nervio/patología , Receptores de Hidrocarburo de Aril/fisiología , Animales , Apoptosis , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Neoplasias de la Vaina del Nervio/genética , Neoplasias de la Vaina del Nervio/metabolismo , Transducción de Señal
7.
Neurobiol Dis ; 109(Pt A): 11-24, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28923597

RESUMEN

Remyelination is an endogenous regenerative process of myelin repair in the central nervous system (CNS) with limited efficacy in demyelinating disorders. As strategies enhancing endogenous remyelination become a therapeutic challenge, we have focused our study on α-secretase-induced sAPPα release, a soluble endogenous protein with neuroprotective and neurotrophic properties. However, the role of sAPPα in remyelination is not known. Therefore, we investigated the remyelination potential of α-secretase-induced sAPPα release following CNS demyelination in mice. Acute demyelination was induced by feeding mice with cuprizone (CPZ) for 5weeks. To test the protective effect and the remyelination potential of etazolate, an α-secretase activator, we designed two treatment protocols. Etazolate was administrated either during the last two weeks or at the end of the CPZ intoxication. In both protocols, etazolate restored the number of myelinated axons in corpus callosum with a corresponding increase in the amount of MBP, one of the major myelin proteins in the brain. We also performed ex vivo studies to decipher etazolate's mechanism of action in a lysolecithin-induced demyelination model using organotypic culture of cerebellar slices. Etazolate treatment was able to i) enhance the release of sAPPα in the culture media of demyelinated slices, ii) protect myelinated axons from demyelination, iii) increase the number of mature oligodendrocytes, iv) promote the reappearance of the paired Caspr+ adjacent to the nodes of Ranvier and v) increase the percentage of myelinated axons with short internodes, an indicator of remyelination. Etazolate failed to promote all the aforementioned effects in the presence of GI254023X, an α-secretase inhibitor. Moreover, the protective effects of etazolate in demyelinated slices were mimicked by sAPPα treatment in a dose-dependent manner. In conclusion, etazolate-induced sAPPα release protects myelinated axons from demyelination while also promoting remyelination. This work, thus, highlights the therapeutic potential of strategies that enhance sAPPα release in demyelinating disorders.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Enfermedades Desmielinizantes/metabolismo , Etazolato/administración & dosificación , Vaina de Mielina/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Remielinización , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Encéfalo/efectos de los fármacos , Células Cultivadas , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/metabolismo , Cuerpo Calloso/ultraestructura , Cuprizona/administración & dosificación , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/prevención & control , Lisofosfatidilcolinas/administración & dosificación , Masculino , Ratones Endogámicos C57BL , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/ultraestructura
8.
J Steroid Biochem Mol Biol ; 169: 61-68, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-26940358

RESUMEN

Liver X Receptors (LXRs) α and ß are nuclear receptors able to bind oxidative forms of cholesterol. They play important roles in the central nervous system (CNS), through their implication in a large variety of physiological and pathological processes among which modulation of cholesterol homeostasis and inflammation. Besides, we recently revealed their crucial role in myelination and remyelination in the cerebellum. Given the pleiotropic effects of such receptors on CNS functioning, we studied here the influence of LXRs on myelin gene mRNA accumulation in the major myelinated regions of the CNS in vivo. We show that both LXR isoforms differentially affect mRNA amount of myelin genes (PLP and MBP) in highly myelinated structures such as spinal cord, corpus callosum, optic nerve and cerebellum. In the adult, LXR activation by the synthetic agonist TO901317 significantly increases myelin gene mRNA amount in the cerebellum but not in the other regions studied. Invalidation of the sole LXRß isoform leads to decreased PLP and MBP mRNA levels in all the structures except the spinal cord, while the knock out of both isoforms (LXR dKO) decreases myelin gene mRNA amounts in all the regions tested except the corpus callosum. Interestingly, during myelination process (post-natal day 21), both cerebellum and optic nerve display a decrease in myelin gene mRNA levels in LXR dKO mice. Concomitantly, PLP and MBP mRNA accumulation in the spinal cord is increased. Relative expression level of LXR isoforms could account for the differential modulation of myelin gene expression in the CNS. Altogether our results suggest that, within the CNS, each LXR isoform differentially influences myelin gene mRNA levels in a region- and age-dependant manner, participating in the fine regulation of myelin gene expression.


Asunto(s)
Receptores X del Hígado/metabolismo , Vaina de Mielina/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Cuerpo Calloso/crecimiento & desarrollo , Cuerpo Calloso/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hidrocarburos Fluorados/farmacología , Masculino , Ratones , Ratones Noqueados , Vaina de Mielina/genética , Oligodendroglía/citología , Nervio Óptico/crecimiento & desarrollo , Nervio Óptico/metabolismo , Isoformas de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , Sulfonamidas/farmacología
9.
Proc Natl Acad Sci U S A ; 112(24): 7587-92, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26023184

RESUMEN

The identification of new pathways governing myelination provides innovative avenues for remyelination. Liver X receptors (LXRs) α and ß are nuclear receptors activated by oxysterols that originated from the oxidation of cholesterol. They are crucial for cholesterol homeostasis, a major lipid constituent of myelin sheaths that are formed by oligodendrocytes. However, the role of LXRs in myelin generation and maintenance is poorly understood. Here, we show that LXRs are involved in myelination and remyelination processes. LXRs and their ligands are present in oligodendrocytes. We found that mice invalidated for LXRs exhibit altered motor coordination and spatial learning, thinner myelin sheaths, and reduced myelin gene expression. Conversely, activation of LXRs by either 25-hydroxycholesterol or synthetic TO901317 stimulates myelin gene expression at the promoter, mRNA, and protein levels, directly implicating LXRα/ß in the transcriptional control of myelin gene expression. Interestingly, activation of LXRs also promotes oligodendroglial cell maturation and remyelination after lysolecithin-induced demyelination of organotypic cerebellar slice cultures. Together, our findings represent a conceptual advance in the transcriptional control of myelin gene expression and strongly support a new role of LXRs as positive modulators in central (re)myelination processes.


Asunto(s)
Cerebelo/fisiología , Vaina de Mielina/fisiología , Receptores Nucleares Huérfanos/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Cerebelo/citología , Cerebelo/efectos de los fármacos , Colesterol/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis , Hidrocarburos Fluorados/farmacología , Hidroxicolesteroles/farmacología , Receptores X del Hígado , Masculino , Ratones , Ratones Noqueados , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/genética , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Técnicas de Cultivo de Órganos , Receptores Nucleares Huérfanos/agonistas , Receptores Nucleares Huérfanos/deficiencia , Regiones Promotoras Genéticas , Desempeño Psicomotor/efectos de los fármacos , Desempeño Psicomotor/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Aprendizaje Espacial/efectos de los fármacos , Aprendizaje Espacial/fisiología , Sulfonamidas/farmacología
10.
PLoS One ; 10(3): e0119707, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25803850

RESUMEN

Glioblastoma (GBM) is the most prevalent adult brain tumor, with virtually no cure, and with a median overall survival of 15 months from diagnosis despite of the treatment. SNARE proteins mediate membrane fusion events in cells and are essential for many cellular processes including exocytosis and neurotransmission, intracellular trafficking and cell migration. Here we show that the blockade of the SNARE protein Syntaxin 1 (Stx1) function impairs GBM cell proliferation. We show that Stx1 loss-of-function in GBM cells, through ShRNA lentiviral transduction, a Stx1 dominant negative and botulinum toxins, dramatically reduces the growth of GBM after grafting U373 cells into the brain of immune compromised mice. Interestingly, Stx1 role on GBM progression may not be restricted just to cell proliferation since the blockade of Stx1 also reduces in vitro GBM cell invasiveness suggesting a role in several processes relevant for tumor progression. Altogether, our findings indicate that the blockade of SNARE proteins may represent a novel therapeutic tool against GBM.


Asunto(s)
Toxinas Botulínicas/farmacología , Proliferación Celular/efectos de los fármacos , Glioblastoma/fisiopatología , ARN Interferente Pequeño/farmacología , Sintaxina 1/antagonistas & inhibidores , Animales , Western Blotting , Bromodesoxiuridina , Línea Celular Tumoral , Citometría de Flujo , Glioblastoma/tratamiento farmacológico , Humanos , Lentivirus , Ratones , Invasividad Neoplásica/prevención & control , ARN Interferente Pequeño/genética , Estadísticas no Paramétricas , Transducción Genética/métodos
11.
Cell Mol Life Sci ; 71(7): 1123-48, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23749084

RESUMEN

Wnt signaling is required for neurogenesis, the fate of neural progenitors, the formation of neuronal circuits during development, neuron positioning and polarization, axon and dendrite development and finally for synaptogenesis. This signaling pathway is also implicated in the generation and differentiation of glial cells. In this review, we describe the mechanisms of action of Wnt signaling pathways and their implication in the development and correct functioning of the nervous system. We also illustrate how a dysregulated Wnt pathway could lead to psychiatric, neurodegenerative and demyelinating pathologies. Lithium, used for the treatment of bipolar disease, inhibits GSK3ß, a central enzyme of the Wnt/ß-catenin pathway. Thus, lithium could, to some extent, mimic Wnt pathway. We highlight the possible dialogue between lithium therapy and modulation of Wnt pathway in the treatment of the diseases of the nervous system.


Asunto(s)
Depresores del Sistema Nervioso Central/uso terapéutico , Litio/uso terapéutico , Enfermedades del Sistema Nervioso/metabolismo , Vía de Señalización Wnt , Polaridad Celular , Depresores del Sistema Nervioso Central/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/fisiología , Glucógeno Sintasa Quinasa 3 beta , Humanos , Litio/metabolismo , Modelos Biológicos , Sistema Nervioso/metabolismo , Transmisión Sináptica/efectos de los fármacos , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , beta Catenina/fisiología
12.
Biochem Pharmacol ; 86(1): 106-14, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23500534

RESUMEN

Oxysterols are reactive molecules generated by the oxidation of cholesterol. Their implication in cholesterol homeostasis and in the progression of neurodegenerative disorders is well known. Here, we study the role of oxysterols and their nuclear receptors, Liver X Receptor (LXR), in myelinating glial cells of the central and peripheral nervous systems. First, we show by gas chromatography/mass spectrometry that the brain, sciatic nerve, oligodendrocytes and Schwann cells contain 24(S)-hydroxycholesterol, 25-hydroxycholesterol (25-OH) and 27-hydroxycholesterol, and they express their biosynthetic enzymes. We observed a differential effect of 25-OH toward myelin genes (MPZ and PMP22) expression: 25-OH inhibits MPZ and PMP22 in Schwann cell line but not in oligodendrocyte cell line. Importantly, the invalidation of LXR in mice enhanced MPZ and PMP22 transcripts expression in the sciatic nerve, but inhibited their expression in the brain. We have previously reported that Wnt signaling pathway is crucial for myelin gene expression. We show that the transcripts of Wnt components (Disheveled, TCF3, beta-catenin) are strongly repressed by oxysterols in Schwann cells but are activated in oligodendrocytes. Furthermore, we show by immunofluorescent labeling that beta-catenin is re-localized on the level of the Golgi apparatus of Schwann cells after incubation with 25-OH. We did not observe such an unusual localization of beta-catenin in oligodendrocytes. Our findings reveal a complex cross-talk between LXR and Wnt/beta-catenin pathway in myelinating glial cells.


Asunto(s)
Oligodendroglía/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Células de Schwann/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular , Regulación de la Expresión Génica , Hidroxicolesteroles/farmacología , Receptores X del Hígado , Ratones , Ratones Noqueados , Proteína P0 de la Mielina/genética , Proteína P0 de la Mielina/metabolismo , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Receptores Nucleares Huérfanos/genética , Nervio Ciático/metabolismo , Esteroles/biosíntesis
13.
Proc Natl Acad Sci U S A ; 109(10): 3973-8, 2012 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-22355115

RESUMEN

Glycogen synthase kinase 3ß (GSK3ß) inhibitors, especially the mood stabilizer lithium chloride, are also used as neuroprotective or anti-inflammatory agents. We studied the influence of LiCl on the remyelination of peripheral nerves. We showed that the treatment of adult mice with LiCl after facial nerve crush injury stimulated the expression of myelin genes, restored the myelin structure, and accelerated the recovery of whisker movements. LiCl treatment also promoted remyelination of the sciatic nerve after crush. We also demonstrated that peripheral myelin gene MPZ and PMP22 promoter activities, transcripts, and protein levels are stimulated by GSK3ß inhibitors (LiCl and SB216763) in Schwann cells as well as in sciatic and facial nerves. LiCl exerts its action in Schwann cells by increasing the amount of ß-catenin and provoking its nuclear localization. We showed by ChIP experiments that LiCl treatment drives ß-catenin to bind to T-cell factor/lymphoid-enhancer factor response elements identified in myelin genes. Taken together, our findings open perspectives in the treatment of nerve demyelination by administering GSK3ß inhibitors such as lithium.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Cloruro de Litio/farmacología , Vaina de Mielina/química , Nervios Periféricos/metabolismo , Animales , Núcleo Celular/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína P0 de la Mielina/metabolismo , Nervios Periféricos/efectos de los fármacos , Placebos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células de Schwann/metabolismo , Nervio Ciático/lesiones , Transducción de Señal
14.
J Neurosci ; 31(26): 9620-9, 2011 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-21715627

RESUMEN

Oxysterols are reactive molecules generated from the oxidation of cholesterol. Their implication in cholesterol homeostasis and in the progression of neurodegenerative disorders is well known, but few data are available for their functions in the peripheral nervous system. Our aim was to study the influence of oxysterols on myelin gene expression and myelin sheath formation in peripheral nerves. We show by gas chromatography/mass spectrometry that Schwann cells and sciatic nerves contain 24(S)-hydroxycholesterol, 25-hydroxycholesterol, and 27-hydroxycholesterol and that they express their biosynthetic enzymes and receptors (liver X receptors LXRα and LXRß). We demonstrate that oxysterols inhibit peripheral myelin gene expression [myelin protein zero (MPZ) and peripheral myelin protein-22 (PMP22)] in a Schwann cell line. This downregulation is mediated by either LXRα or LXRß, depending on the promoter context, as suggested by siRNA strategy and chromatin immunoprecipitation assays in Schwann cells and in the sciatic nerve of LXR knock-out mice. Importantly, the knock-out of LXR in mice results in thinner myelin sheaths surrounding the axons. Oxysterols repress myelin genes via two mechanisms: by binding of LXRs to myelin gene promoters and by inhibiting the Wnt/ß-catenin pathway that is crucial for the expression of myelin genes. The Wnt signaling components (Disheveled, TCF/LEF, ß-catenin) are strongly repressed by oxysterols. Furthermore, the recruitment of ß-catenin at the levels of the MPZ and PMP22 promoters is decreased. Our data reveal new endogenous mechanisms for the negative regulation of myelin gene expression, highlight the importance of oxysterols and LXR in peripheral nerve myelination, and open new perspectives of treating demyelinating diseases with LXR agonists.


Asunto(s)
Hidroxicolesteroles/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Células de Schwann/metabolismo , Nervio Ciático/metabolismo , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animales , Western Blotting , Inmunoprecipitación de Cromatina , Cromatografía de Gases y Espectrometría de Masas , Receptores X del Hígado , Masculino , Ratones , Proteína P0 de la Mielina/genética , Proteína P0 de la Mielina/metabolismo , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Receptores Nucleares Huérfanos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Wnt/genética , beta Catenina/genética
15.
J Steroid Biochem Mol Biol ; 104(3-5): 293-300, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17428656

RESUMEN

Evidence that endogenous progesterone (PROG) is neuroprotective after traumatic brain injury (TBI) is supported by the findings that pseudopregnant female rats present less edema and achieve better functional recovery than do male rats. PROG in the nervous system may originate from steroidogenic glands or can be locally synthesized. 3beta-Hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3beta-HSD) is the key enzyme in the biosynthesis of PROG. In the present study, we investigated the effects of pseudopregnancy and TBI on brain 3beta-HSD mRNA expression and on PROG levels. Twenty-four hours after bilateral contusion of the medial prefrontal cortex of rats, 3beta-HSD mRNA expression was analyzed by in situ hybridization while PROG levels were measured by gas chromatography/mass spectrometry. Similar levels of 3beta-HSD mRNA expression were observed in males and pseudopregnant females in the non-injured groups. At this time point, there was a significant decrease in the 3beta-HSD mRNA expression in the contusion site within the frontal cortex in both males and pseudopregnant females. In all other regions analyzed, 3beta-HSD mRNA expression was not affected by TBI and there was no difference between males and pseudopregnant females. The high decrease in the expression of the 3beta-HSD mRNA in the lesion site 24 h after TBI suggests a possible decrease in locally synthesized PROG in lesion site without change in the other brain regions. This decrease has less impact in pseudopregnant females since they have high plasmatic and brain levels of PROG compared to males.


Asunto(s)
Lesiones Encefálicas/enzimología , Encéfalo/enzimología , Complejos Multienzimáticos/genética , Progesterona Reductasa/genética , Seudoembarazo/enzimología , Esteroide Isomerasas/genética , Animales , Encéfalo/metabolismo , Química Encefálica , Lesiones Encefálicas/patología , Femenino , Regulación Enzimológica de la Expresión Génica , Masculino , Modelos Biológicos , Complejos Multienzimáticos/metabolismo , Progesterona/análisis , Progesterona/sangre , Progesterona Reductasa/metabolismo , Seudoembarazo/patología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Esteroide Isomerasas/metabolismo
16.
J Neurochem ; 93(5): 1314-26, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15934950

RESUMEN

After traumatic brain injury, progesterone has important neuroprotective effects in the nervous system. There is better functional outcome and less oedema formation in pseudopregnant rat females (high levels of endogenous progesterone) than in males. In addition to intracellular progesterone receptors, membrane binding sites of the hormone such as 25-Dx may also be involved in neuroprotection. In the present study we investigated the distribution of the membrane-associated progesterone-binding protein 25-Dx in rat brain. Immunohistochemical analysis showed that 25-Dx is particularly abundant in the hypothalamic area, circumventricular organs, and ependymal cells of the lateral walls of the third and lateral ventricles. A strong signal was also detected in the meninges. Double immunofluorescence immunolabelling and confocal microscopy showed that 25-Dx is co-expressed with vasopressin in neurones of the paraventricular, supraoptic and retrochiasmatic nuclei. Levels of 25-Dx expression were higher in pseudopregnant females than in males. After traumatic brain injury, 25-Dx expression was up-regulated in neurones and induced in astrocytes, which play an important role in regulating water and ion homeostasis. The expression of 25-Dx in structures involved in CSF production (choroid plexus) and in osmoregulation (circumventricular organs, hypothalamus and meninges), and its up-regulation after brain damage, point to a novel and potentially important role of this progesterone-binding protein in the maintenance of water homeostasis after traumatic brain injury.


Asunto(s)
Lesiones Encefálicas/metabolismo , Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Homeostasis , Agua/metabolismo , Animales , Femenino , Masculino , Proteínas de la Membrana , Fenotipo , Seudoembarazo/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Progesterona , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Distribución Tisular , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...