Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Nat Nanotechnol ; 19(5): 705-714, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38366225

RESUMEN

Graphene oxide nanomaterials are being developed for wide-ranging applications but are associated with potential safety concerns for human health. We conducted a double-blind randomized controlled study to determine how the inhalation of graphene oxide nanosheets affects acute pulmonary and cardiovascular function. Small and ultrasmall graphene oxide nanosheets at a concentration of 200 µg m-3 or filtered air were inhaled for 2 h by 14 young healthy volunteers in repeated visits. Overall, graphene oxide nanosheet exposure was well tolerated with no adverse effects. Heart rate, blood pressure, lung function and inflammatory markers were unaffected irrespective of graphene oxide particle size. Highly enriched blood proteomics analysis revealed very few differential plasma proteins and thrombus formation was mildly increased in an ex vivo model of arterial injury. Overall, acute inhalation of highly purified and thin nanometre-sized graphene oxide nanosheets was not associated with overt detrimental effects in healthy humans. These findings demonstrate the feasibility of carefully controlled human exposures at a clinical setting for risk assessment of graphene oxide, and lay the foundations for investigating the effects of other two-dimensional nanomaterials in humans. Clinicaltrials.gov ref: NCT03659864.


Asunto(s)
Grafito , Nanoestructuras , Humanos , Grafito/química , Masculino , Adulto , Femenino , Nanoestructuras/química , Adulto Joven , Método Doble Ciego , Frecuencia Cardíaca/efectos de los fármacos , Administración por Inhalación , Exposición por Inhalación/efectos adversos , Presión Sanguínea/efectos de los fármacos , Tamaño de la Partícula
2.
J Inflamm (Lond) ; 19(1): 12, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050729

RESUMEN

BACKGROUND: Macrophages play a central role in inflammation by phagocytosing invading pathogens, apoptotic cells and debris, as well as mediating repair of tissues damaged by trauma. In order to do this, these dynamic cells generate a variety of inflammatory mediators including eicosanoids such as prostaglandins, leukotrienes and hydroxyeicosatraenoic acids (HETEs) that are formed through the cyclooxygenase, lipoxygenase and cytochrome P450 pathways. The ability to examine the effects of eicosanoid production at the protein level is therefore critical to understanding the mechanisms associated with macrophage activation. RESULTS: This study presents a stable isotope labelling with amino acids in cell culture (SILAC) -based proteomics strategy to quantify the changes in macrophage protein abundance following inflammatory stimulation with Kdo2-lipid A and ATP, with a focus on eicosanoid metabolism and regulation. Detailed gene ontology analysis, at the protein level, revealed several key pathways with a decrease in expression in response to macrophage activation, which included a promotion of macrophage polarisation and dynamic changes to energy requirements, transcription and translation. These findings suggest that, whilst there is evidence for the induction of a pro-inflammatory response in the form of prostaglandin secretion, there is also metabolic reprogramming along with a change in cell polarisation towards a reduced pro-inflammatory phenotype. CONCLUSIONS: Advanced quantitative proteomics in conjunction with functional pathway network analysis is a useful tool to investigate the molecular pathways involved in inflammation.

3.
Front Cell Dev Biol ; 10: 853451, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721503

RESUMEN

Arteriosclerosis is an important age-dependent disease that encompasses atherosclerosis, in-stent restenosis (ISR), pulmonary hypertension, autologous bypass grafting and transplant arteriosclerosis. Endothelial dysfunction and the proliferation of vascular smooth muscle cell (vSMC)-like cells is a critical event in the pathology of arteriosclerotic disease leading to intimal-medial thickening (IMT), lipid retention and vessel remodelling. An important aspect in guiding clinical decision-making is the detection of biomarkers of subclinical arteriosclerosis and early cardiovascular risk. Crucially, relevant biomarkers need to be good indicators of injury which change in their circulating concentrations or structure, signalling functional disturbances. Extracellular vesicles (EVs) are nanosized membraneous vesicles secreted by cells that contain numerous bioactive molecules and act as a means of intercellular communication between different cell populations to maintain tissue homeostasis, gene regulation in recipient cells and the adaptive response to stress. This review will focus on the emerging field of EV research in cardiovascular disease (CVD) and discuss how key EV signatures in liquid biopsies may act as early pathological indicators of adaptive lesion formation and arteriosclerotic disease progression. EV profiling has the potential to provide important clinical information to complement current cardiovascular diagnostic platforms that indicate or predict myocardial injury. Finally, the development of fitting devices to enable rapid and/or high-throughput exosomal analysis that require adapted processing procedures will be evaluated.

4.
PLoS One ; 17(5): e0267675, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35560114

RESUMEN

Hyperglycaemia is known to induce endothelial dysfunction and changes in metabolic function, which could be implicated in diabetes-induced cardiovascular disease. To date, however, little is known about the impact of physiologically relevant concentrations of fructose on endothelial cells. A novel in vitro model was devised to establish the impact of substitution of a small proportion of glucose with an equal concentration (0.1 mM or 1 mM) of fructose on EA.hy926 endothelial cells during periodic carbohydrate "meals" superimposed on a normoglycaemic (5.5 mM) background. Parallel experiments were conducted using meals consisting of normoglycaemic glucose, intermediate glucose (12.5 mM) or profound hyperglycaemia (25 mM), each delivered for 2 h, with and without substituted fructose over 50 h. Outcome measures included nitrite as a surrogate marker of the mediator of healthy endothelial function, nitric oxide (NO), and a range of bioenergetic parameters using a metabolic analyser. Despite its relatively low proportion of carbohydrate load, intermittent fructose induced a substantial reduction (approximately 90%) in NO generation in cells treated with either concentration of fructose. Cell markers of oxidative stress were not altered by this treatment regimen. However, the cells experienced a marked increase in metabolic activity induced by fructose, irrespective of the glucose concentration delivered simultaneously in the "meals". Indeed, glucose alone failed to induce any metabolic impact in this model. Key metabolic findings were a 2-fold increase in basal oxygen consumption rate and a similar change in extracellular acidification rate-a marker of glycolysis. Non-metabolic oxygen consumption also increased substantially in cells exposed to fructose. There was no difference between results with 0.1 mM fructose and those with 1 mM fructose. Low, physiologically relevant concentrations of fructose, delivered in a pattern that mimics mealtime consumption, had a profound impact on endothelial function and bioenergetics in an in vitro cell model. The results suggest that endothelial cells are exquisitely sensitive to circulating fructose; the potential ensuing dysfunction could have major implications for development of atherosclerotic disease associated with high fructose consumption.


Asunto(s)
Fructosa , Hiperglucemia , Células Endoteliales/metabolismo , Metabolismo Energético , Fructosa/metabolismo , Fructosa/farmacología , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Hiperglucemia/metabolismo , Óxido Nítrico/metabolismo
5.
Free Radic Biol Med ; 182: 73-78, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35217176

RESUMEN

New readily accessible systemic redox biomarkers are needed to understand the biological roles reactive oxygen species (ROS) play in humans because overtly flawed, technically fraught, and unspecific assays severely hamper translational progress. The antibody-linked oxi-state assay (ALISA) makes it possible to develop valid ROS-sensitive target-specific protein thiol redox state biomarkers in a readily accessible microplate format. Here, we used a maximal exercise bout to disrupt redox homeostasis in a physiologically meaningful way to determine whether the catalytic core of the serine/threonine protein phosphatase PP2A is a candidate systemic redox biomarker in human erythrocytes. We reasoned that: constitutive oxidative stress (e.g., haemoglobin autoxidation) would sensitise erythrocytes to disrupted ion homeostasis as manifested by increased oxidation of the ion regulatory phosphatase PP2A. Unexpectedly, an acute bout of maximal exercise lasting ~16 min decreased PP2A-specific reversible thiol oxidation (redox ratio, rest: 0.46; exercise: 0.33) without changing PP2A content (rest: 193 pg/ml; exercise: 191 pg/ml). The need for only 3-4 µl of sample to perform ALISA means PP2A-specific reversible thiol oxidation is a capillary-fingertip blood-compatible candidate redox biomarker. Consistent with biologically meaningful redox regulation, thiol reductant-inducible PP2A activity was significantly greater (+10%) at rest compared to exercise. We establish a route to developing new readily measurable protein thiol redox biomarkers for understanding the biological roles ROS play in humans.


Asunto(s)
Estrés Oxidativo , Compuestos de Sulfhidrilo , Biomarcadores/metabolismo , Eritrocitos/metabolismo , Humanos , Oxidación-Reducción , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/metabolismo
6.
Clin Pharmacol Ther ; 111(6): 1222-1238, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35098531

RESUMEN

Contrast-induced nephropathy (CIN) is a major complication of imaging in patients with chronic kidney disease (CKD). The publication of an academic randomized controlled trial (RCT; n = 83) reporting oral (N)-acetylcysteine (NAC) to reduce CIN led to > 70 clinical trials, 23 systematic reviews, and 2 large RCTs showing no benefit. However, no mechanistic studies were conducted to determine how NAC might work; proposed mechanisms included renal artery vasodilatation and antioxidant boosting. We evaluated the proposed mechanisms of NAC action in participants with healthy and diseased kidneys. Four substudies were performed. Two randomized, double-blind, placebo-controlled, three-period crossover studies (n = 8) assessed the effect of oral and intravenous (i.v.) NAC in healthy kidneys in the presence/absence of iso-osmolar contrast (iodixanol). A third crossover study in patients with CKD stage III (CKD3) (n = 8) assessed the effect of oral and i.v. NAC without contrast. A three-arm randomized, double-blind, placebo-controlled parallel-group study, recruiting patients with CKD3 (n = 66) undergoing coronary angiography, assessed the effect of oral and i.v. NAC in the presence of contrast. We recorded systemic (blood pressure and heart rate) and renal (renal blood flow (RBF) and glomerular filtration rate (GFR)) hemodynamics, and antioxidant status, plus biomarkers of renal injury in patients with CKD3 undergoing angiography. Primary outcome for all studies was RBF over 8 hours after the start of i.v. NAC/placebo. NAC at doses used in previous trials of renal prophylaxis was essentially undetectable in plasma after oral administration. In healthy volunteers, i.v. NAC, but not oral NAC, increased blood pressure (mean area under the curve (AUC) mean arterial pressure (MAP): mean difference 29 h⋅mmHg, P = 0.019 vs. placebo), heart rate (28 h⋅bpm, P < 0.001), and RBF (714 h⋅mL/min, 8.0% increase, P = 0.006). Renal vasodilatation also occurred in the presence of contrast (RBF 917 h⋅mL/min, 12% increase, P = 0.005). In patients with CKD3 without contrast, only a rise in heart rate (34 h⋅bpm, P = 0.010) and RBF (288 h⋅mL/min, 6.0% increase, P = 0.001) occurred with i.v. NAC, with no significant effect on blood pressure (MAP rise 26 h⋅mmHg, P = 0.156). Oral NAC showed no effect. In patients with CKD3 receiving contrast, i.v. NAC increased blood pressure (MAP rise 52 h⋅mmHg, P = 0.008) but had no effect on RBF (151 h⋅mL/min, 3.0% increase, P = 0.470), GFR (29 h⋅mL/min/1.73m², P = 0.122), or markers of renal injury. Neither i.v. nor oral NAC affected plasma antioxidant status. We found oral NAC to be poorly absorbed and have no reno-protective effects. Intravenous, not oral, NAC caused renal artery vasodilatation in healthy volunteers but offered no protection to patients with CKD3 at risk of CIN. These findings emphasize the importance of mechanistic clinical studies before progressing to RCTs for novel interventions. Thousands were recruited to academic clinical trials without the necessary mechanistic studies being performed to confirm the approach had any chance of working.


Asunto(s)
Enfermedades Renales , Insuficiencia Renal Crónica , Acetilcisteína/uso terapéutico , Antioxidantes , Medios de Contraste/efectos adversos , Creatinina , Estudios Cruzados , Humanos , Insuficiencia Renal Crónica/tratamiento farmacológico , Resultado del Tratamiento
7.
JMIR Mhealth Uhealth ; 9(3): e25313, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33764310

RESUMEN

BACKGROUND: Accurate, continuous heart rate measurements are important for health assessment, physical activity, and sporting performance, and the integration of heart rate measurements into wearable devices has extended its accessibility. Although the use of photoplethysmography technology is not new, the available data relating to the validity of measurement are limited, and the range of activities being performed is often restricted to one exercise domain and/or limited intensities. OBJECTIVE: The primary objective of this study was to assess the validity of the Polar OH1 and Fitbit Charge 3 devices for measuring heart rate during rest, light, moderate, vigorous, and sprint-type exercise. METHODS: A total of 20 healthy adults (9 female; height: mean 1.73 [SD 0.1] m; body mass: mean 71.6 [SD 11.0] kg; and age: mean 40 [SD 10] years) volunteered and provided written informed consent to participate in the study consisting of 2 trials. Trial 1 was split into 3 components: 15-minute sedentary activities, 10-minute cycling on a bicycle ergometer, and incremental exercise test to exhaustion on a motorized treadmill (18-42 minutes). Trial 2 was split into 2 components: 4 × 15-second maximal sprints on a cycle ergometer and 4 × 30- to 50-m sprints on a nonmotorized resistance treadmill. Data from the 3 devices were time-aligned, and the validity of Polar OH1 and Fitbit Charge 3 was assessed against Polar H10 (criterion device). Validity was evaluated using the Bland and Altman analysis, Pearson moment correlation coefficient, and mean absolute percentage error. RESULTS: Overall, there was a very good correlation between the Polar OH1 and Polar H10 devices (r=0.95), with a mean bias of -1 beats·min-1 and limits of agreement of -20 to 19 beats·min-1. The Fitbit Charge 3 device underestimated heart rate by 7 beats·min-1 compared with Polar H10, with a limit of agreement of -46 to 33 beats·min-1 and poor correlation (r=0.8). The mean absolute percentage error for both devices was deemed acceptable (<5%). Polar OH1 performed well across each phase of trial 1; however, validity was worse for trial 2 activities. Fitbit Charge 3 performed well only during rest and nonsprint-based treadmill activities. CONCLUSIONS: Compared with our criterion device, Polar OH1 was accurate at assessing heart rate, but the accuracy of Fitbit Charge 3 was generally poor. Polar OH1 performed worse during trial 2 compared with the activities in trial 1, and the validity of the Fitbit Charge 3 device was particularly poor during our cycling exercises.


Asunto(s)
Monitores de Ejercicio , Dispositivos Electrónicos Vestibles , Adulto , Ejercicio Físico , Femenino , Frecuencia Cardíaca , Determinación de la Frecuencia Cardíaca , Humanos
8.
Sci Rep ; 10(1): 19547, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177612

RESUMEN

Cardiovascular disease is the primary driver of morbidity and mortality associated with diabetes. Hyperglycaemia is implicated in driving endothelial dysfunction that might underpin the link between diabetes and cardiovascular disease. This study was designed to determine the impact of chronic preconditioning of cells to hyperglycaemia and transient switching of cultured endothelial cells between hyper- and normo-glycaemic conditions on bioenergetic and functional parameters. Immortalised EA.hy926 endothelial cells were cultured through multiple passages under normoglycaemic (5.5 mM) or hyperglycaemic (25 mM) conditions. Cells were subsequently subjected (48 h) to continued normo- or hyperglycaemic exposure, or were switched to the alternative glycaemic condition, or to an intermediate glucose concentration (12.5 mM) and metabolic activity, together with key markers of function were measured. Cells habituated to hyperglycaemia were energetically quiescent. Functional activity, characterised by the measurement of nitric oxide, endothelin-1, tissue plasminogen activator and plasminogen activator inhibitor-1, was depressed by exposure to high glucose, with the reduction in nitric oxide production being the most notable. Function was more responsive to acute changes in extracellular glucose than were bioenergetic changes. We conclude that glucose is a key determinant of endothelial function. The study highlights the importance of chronic glucose exposure on cell phenotype and emphasises the need to pay close attention to glucose preconditioning in interpreting results under culture conditions.


Asunto(s)
Células Endoteliales/fisiología , Glucosa/metabolismo , Hiperglucemia/metabolismo , Enfermedades Cardiovasculares/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular , Diabetes Mellitus/metabolismo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/metabolismo , Metabolismo Energético , Glucosa/farmacología , Humanos , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Nitritos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Inhibidor 1 de Activador Plasminogénico/metabolismo , Activador de Tejido Plasminógeno/metabolismo
9.
World J Cardiol ; 12(1): 26-34, 2020 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-31984125

RESUMEN

Percutaneous coronary intervention for the treatment of coronary artery disease is most commonly performed in the UK through the radial artery, as this is safer than the femoral approach. However, despite improvements in technology and techniques, complications can occur. The most common complication, arterial spasm, can cause intense pain and, in some cases, procedural failure. The incidence of spasm is dependent on several variables, including operator experience, artery size, and equipment used. An anti-spasmolytic cocktail can be applied to reduce spasm, which usually includes an exogenous nitric oxide (NO) donor (glyceryl trinitrate). NO is an endogenous local vasodilator and therefore is a potential target for anti-spasm intervention. However, systemic administration can result in unwanted side-effects, such as hypotension. A method that adopts local delivery of NO might be advantageous. This review article describes the mechanisms involved in radial artery spasm, discusses the advantages and disadvantages of current strategies to reduce spasm, and highlight the potential of NO-loaded nanoporous materials for use in this setting.

10.
Front Cardiovasc Med ; 7: 629933, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33614744

RESUMEN

Meta-analyses have indicated that individuals with type 1 or type 2 diabetes are at increased risk of suffering a severe form of COVID-19 and have a higher mortality rate than the non-diabetic population. Patients with diabetes have chronic, low-level systemic inflammation, which results in global cellular dysfunction underlying the wide variety of symptoms associated with the disease, including an increased risk of respiratory infection. While the increased severity of COVID-19 amongst patients with diabetes is not yet fully understood, the common features associated with both diseases are dysregulated immune and inflammatory responses. An additional key player in COVID-19 is the enzyme, angiotensin-converting enzyme 2 (ACE2), which is essential for adhesion and uptake of virus into cells prior to replication. Changes to the expression of ACE2 in diabetes have been documented, but they vary across different organs and the importance of such changes on COVID-19 severity are still under investigation. This review will examine and summarise existing data on how immune and inflammatory processes interplay with the pathogenesis of COVID-19, with a particular focus on the impacts that diabetes, endothelial dysfunction and the expression dynamics of ACE2 have on the disease severity.

11.
Clin Toxicol (Phila) ; 58(6): 437-452, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31810386

RESUMEN

Introduction: Organophosphorus (OP) insecticide self-poisoning is a global problem, killing tens of thousands of people every year. Oxidative stress has been proposed to play a pathological role in OP poisoning, but whether it plays a direct toxic role is currently unclear.Objectives: To determine whether there is consistent evidence of oxidative stress in patients with acute OP insecticide self-poisoning, and whether there are animal or human trial data that indicate that treatment of oxidative stress provides clinical benefit, which would suggest a direct toxic effect of oxidative stress.Methods: We conducted a systematic review using the PubMed, EMBASE and MEDLINE databases, and the Cochrane Database of Systematic reviews, based upon the following search terms and keywords: "organophosphate poisoning", "oxidative stress" and "antioxidant". All articles relevant to the aims of the study were included. Articles related to chronic OP poisoning, to use of medicines without antioxidant benefits, or to subjects other than oxidative stress were excluded. The search returned 256 results of which 17 studies were considered relevant and grouped under the following categories: observational human studies (n = 11) and intervention studies in animals (n = 4) and humans (n = 2).Oxidative stress markers in human studies: Oxidative damage to lipids and proteins was reported in all eleven human studies. Eight of nine studies reported variable increases in a weak marker of lipid peroxidation, malondialdehyde. In two case-control studies, erythrocyte membrane malondialdehyde concentrations were 380% and 160% higher in cases than controls, while plasma malondialdehyde concentrations were ∼63% higher in cases than controls in three case-control studies. In a prospective study, plasma malondialdehyde did not increase significantly from baseline in moderate or severely poisoned patients. Five case-control studies measured thiol residues as markers of protein oxidative damage and found variable changes after poisoning. No evidence of oxidative DNA damage was found in the one study that investigated it.Antioxidant intervention studies in animals: After treatment with an antioxidant, all four studies showed an improvement in either markers of oxidative damage or antioxidant activity. One mouse study with a relatively low risk of bias showed that administration of acetylcysteine 200 mg/kg reduced malondialdehyde by 35% and increased survival by more than 60%.Antioxidant intervention studies in humans: We found two small randomised controlled trials reporting the use of acetylcysteine as an adjunct to standard treatment in acute OP poisoning. The trials found that acetylcysteine reduced atropine requirements by 77% and 55%, but did not affect clinically relevant outcomes.Conclusions: Several studies showed evidence of OP insecticide-induced oxidative damage and antioxidant activity, suggesting that endogenous antioxidant defences are triggered in acute OP poisoning. However, the markers of lipid peroxidation used were weak, there was high inter-individual variability between studies in results and quality, and marked variation between the OP insecticides involved. Animal data provide some evidence that antioxidants alleviate adverse effects of acute poisoning, suggesting that oxidative stress may directly cause clinical harm. Acetylcysteine appeared beneficial in animal studies, but this could be mediated via increased synthesis of the endogenous detoxifying agent, glutathione, rather than through a direct antioxidant effect. The two human clinical studies were too small to provide any clear evidence to support the use of acetylcysteine in OP poisoning. Further research into the mechanisms of oxidative stress in acute OP poisoning, combined with large unambiguous clinical trials of antioxidants, are required before they can be used routinely in treatment.


Asunto(s)
Insecticidas/toxicidad , Intoxicación por Organofosfatos/metabolismo , Compuestos Organofosforados/toxicidad , Estrés Oxidativo/efectos de los fármacos , Enfermedad Aguda , Animales , Antioxidantes/metabolismo , Humanos
12.
Front Physiol ; 10: 1293, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681007

RESUMEN

Eating a high calorie meal is known to induce endothelial dysfunction and it is reported that consuming drinks rich in antioxidants may be protective against this. In this study we assessed the effects of three antioxidant drinks with considerable disparity in their antioxidant content on endothelial function. Seven apparently healthy overweight and older adults (BMI 25-35; mean age 57 ± 3 years; one male, six females) completed four trials in a randomized counterbalanced design. Water (control), orange juice, green tea, or red wine were consumed with a high calorie meal (>900 kcal). Endothelial function was measured by flow-mediated dilatation immediately before (fasted, baseline) and 2 h after the meal. Blood samples were also obtained for lipid and glucose analysis, plasma nitrite ( NO 2 - ) and oxidized low-density lipoprotein (ox-LDL). Participants returned after a minimum 3 days washout to complete the remaining arms of the study. The results found that the high calorie meal induced a substantial increase in triglycerides, but not cholesterol or glucose, at 2 h after meal ingestion. FMD was significantly reduced by ∼35% at this timepoint, but the effect was not attenuated by co-ingestion of any of the antioxidant drinks. Reduced FMD was mirrored by a reduction in NO 2 - , but ox-LDL was not increased at 2 h after the meal. None of the undertaken measures were influenced by the antioxidant drinks. We conclude that co-ingestion of none of our test antioxidant drinks protected against the substantial post-prandial endothelial dysfunction induced by an unhealthy meal challenge in our sample population at a 2 h timepoint.

13.
Front Cardiovasc Med ; 6: 89, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428618

RESUMEN

Arteriosclerosis causes significant morbidity and mortality worldwide. Central to this process is the development of subclinical non-atherosclerotic intimal lesions before the appearance of pathologic intimal thickening and advanced atherosclerotic plaques. Intimal thickening is associated with several risk factors, including oxidative stress due to reactive oxygen species (ROS), inflammatory cytokines and lipid. The main ROS producing systems in-vivo are reduced nicotinamide dinucleotide phosphate (NADPH) oxidase (NOX). ROS effects are context specific. Exogenous ROS induces apoptosis and senescence, whereas intracellular ROS promotes stem cell differentiation, proliferation, and migration. Lineage tracing studies using murine models of subclinical atherosclerosis have revealed the contributory role of medial smooth muscle cells (SMCs), resident vascular stem cells, circulating bone-marrow progenitors and endothelial cells that undergo endothelial-mesenchymal-transition (EndMT). This review will address the putative physiological and patho-physiological roles of ROS in controlling vascular cell fate and ROS contribution to vascular regeneration and disease progression.

14.
Medchemcomm ; 10(5): 764-777, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31191867

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia worldwide, normally affecting people aged over 65. Due to the multifactorial nature of this disease, a "multi-target-directed ligands" (MTDLs) approach for the treatment of this illness has generated intense research interest in the past few years. Vanillin is a natural antioxidant and it provides a good starting point for the synthesis of new compounds with enhanced antioxidant properties, together with many biological activities, including ß-amyloid peptide aggregating and acetylcholinesterase inhibiting properties. Here we report novel vanillin derivatives, bearing a tacrine or a naphthalimido moiety. All compounds exhibited improved antioxidant properties using DPPH assay, with IC50 as low as 19.5 µM, FRAP and ORAC assays, with activities up to 1.54 and 6.4 Trolox equivalents, respectively. In addition, all compounds synthesized showed inhibitory activity toward acetylcholinesterase enzyme at µmolar concentrations using the Ellman assay. Computational docking studies of selected compounds showed interactions with both the catalytic anionic site and the peripheral anionic site of the enzyme. Furthermore, these compounds inhibited Aß(1-42) amyloid aggregation using the fluorometric ThT assay, with compound 4 showing comparable inhibitory activity to the positive control, curcumin. At cellular level compound 4 (1 µM) showed significant protective effects in neuroblastoma SH-SY5Y cell line when treated with hydrogen peroxide (400 µM). In our opinion, vanillin derivatives could provide a viable platform for future development of multi-targeted ligands against AD.

15.
Biosci Rep ; 38(6)2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30242056

RESUMEN

Objectives: Acute coronary syndrome (ACS) is the major cause of mortality worldwide and caused mainly by atherosclerosis of coronary arteries. Apolipoprotein B100 (ApoB100) is a major component of low-density lipoprotein (LDL) and its oxidation can trigger inflammation in vascular endothelial cells leading to atherosclerosis. The association between antibodies to ApoB100-derived antigens and atherosclerotic diseases has been studied in recent years, but the findings appear to be controversial. The present study developed an ELISA in-house with ApoB100-derived peptide antigens to circulating anti-ApoB100 IgG antibodies in patients with ACS. Methods: Fifteen ApoB100-derived peptide antigens (Ag1-Ag15) were designed to develop an in-house ELISA for the detection of circulating anti-ApoB100 IgG levels in 350 patients with ACS and 201 control subjects amongst a Chinese population. Binary logistic regression was applied to examine the differences in anti-ApoB IgG levels between the patient group and the control group with adjustment for a number of confounding factors; the correlation between anti-ApoB100 IgG levels and clinical characteristics was also tested. Results: Patients with ACS had significantly higher levels of plasma IgG for Ag1 (adjusted P<0.001) and Ag10 antigens (adjusted P<0.001). There was no significant increase in the levels of IgG to the other 13 antigens in these ACS patients. In the control group, anti-Ag10 IgG levels were positively correlated with age, high-density lipoprotein (HDL), and ApoA levels (P≤0.001 for all) and negatively correlated with blood triglyceride (TG) (P=0.008); in the patient group, anti-Ag10 IgG levels were positively correlated with LDL (P=0.003), and negatively correlated with ApoA (P=0.048) and systolic blood pressure (SBP) (P=0.036). The area under ROC (receiver operator characteristic) curve (AUC) was 0.612 (95% confidence interval (CI): 0.560-0.664; P<0.001) in anti-Ag1 IgG assay and 0.621 (95% CI: 0.569-0.672; P<0.001) in anti-Ag10 IgG assay. Conclusion: Circulating IgG for ApoB100-derived peptide antigens may be a useful biomarker of ACS, although anti-ApoB IgG levels were not associated with the coronary artery plaque burden characterized by the coronary Gensini score.


Asunto(s)
Síndrome Coronario Agudo/genética , Apolipoproteína B-100/genética , Aterosclerosis/genética , Péptidos/genética , Síndrome Coronario Agudo/sangre , Síndrome Coronario Agudo/inmunología , Síndrome Coronario Agudo/patología , Antígenos/sangre , Antígenos/genética , Antígenos/inmunología , Apolipoproteína B-100/sangre , Apolipoproteína B-100/inmunología , Aterosclerosis/sangre , Aterosclerosis/inmunología , Aterosclerosis/patología , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Lipoproteínas LDL/sangre , Lipoproteínas LDL/genética , Masculino , Persona de Mediana Edad , Péptidos/inmunología
17.
Redox Biol ; 16: 344-351, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29587245

RESUMEN

Developmental synapse pruning refines burgeoning connectomes. The basic mechanisms of mitochondrial reactive oxygen species (ROS) production suggest they select inactive synapses for pruning: whether they do so is unknown. To begin to unravel whether mitochondrial ROS regulate pruning, we made the local consequences of neuromuscular junction (NMJ) pruning detectable as motor deficits by using disparate exogenous and endogenous models to induce synaptic inactivity en masse in developing Xenopus laevis tadpoles. We resolved whether: (1) synaptic inactivity increases mitochondrial ROS; and (2) chemically heterogeneous antioxidants rescue synaptic inactivity induced motor deficits. Regardless of whether it was achieved with muscle (α-bungarotoxin), nerve (α-latrotoxin) targeted neurotoxins or an endogenous pruning cue (SPARC), synaptic inactivity increased mitochondrial ROS in vivo. The manganese porphyrins MnTE-2-PyP5+ and/or MnTnBuOE-2-PyP5+ blocked mitochondrial ROS to significantly reduce neurotoxin and endogenous pruning cue induced motor deficits. Selectively inducing mitochondrial ROS-using mitochondria-targeted Paraquat (MitoPQ)-recapitulated synaptic inactivity induced motor deficits; which were significantly reduced by blocking mitochondrial ROS with MnTnBuOE-2-PyP5+. We unveil mitochondrial ROS as synaptic activity sentinels that regulate the phenotypical consequences of forced synaptic inactivity at the NMJ. Our novel results are relevant to pruning because synaptic inactivity is one of its defining features.


Asunto(s)
Mitocondrias/metabolismo , Unión Neuromuscular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sinapsis/fisiología , Animales , Antioxidantes/metabolismo , Bungarotoxinas/administración & dosificación , Larva/efectos de los fármacos , Larva/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Actividad Motora/efectos de los fármacos , Unión Neuromuscular/fisiología , Paraquat/metabolismo , Venenos de Araña/administración & dosificación , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Xenopus laevis/metabolismo , Xenopus laevis/fisiología
18.
Oxid Med Cell Longev ; 2017: 9260701, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29081896

RESUMEN

Despite limited bioavailability and rapid degradation, dietary anthocyanins are antioxidants with cardiovascular benefits. This study tested the hypothesis that the antioxidant protection conferred by the anthocyanin, delphinidin, is mediated by modulation of endogenous antioxidant defences, driven by its degradation product, gallic acid. Delphinidin was found to degrade rapidly (t1/2 ~ 30 min), generating gallic acid as a major degradation product. Both delphinidin and gallic acid generated oxygen-centred radicals at high (100 µM) concentrations in vitro. In a cultured human umbilical vein endothelial cell model of oxidative stress, the antioxidant protective effects of both delphinidin and gallic acid displayed a hormesic profile; 100 µM concentrations of both were cytotoxic, but relatively low concentrations (100 nM-1 µM) protected the cells and were associated with increased intracellular glutathione. We conclude that delphinidin is intrinsically unstable and unlikely to confer any direct antioxidant activity in vivo yet it offered antioxidant protection to cells at low concentrations. This paradox might be explained by the ability of the degradation product, gallic acid, to confer benefit. The findings are important in understanding the mode of protection conferred by anthocyanins and reinforce the necessity to conduct in vitro experiments at biologically relevant concentrations.


Asunto(s)
Antocianinas/metabolismo , Antioxidantes/metabolismo , Células Endoteliales/metabolismo , Ácido Gálico/metabolismo , Glutatión/metabolismo , Estrés Oxidativo/fisiología , Humanos
19.
Br J Pharmacol ; 174(11): 1209-1225, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28071785

RESUMEN

Polyphenols are widely regarded to have a wide range of health-promoting qualities, including beneficial effects on cardiovascular disease. Historically, the benefits have been linked to their well-recognized powerful antioxidant activity. However, the concept that the beneficial effects are attributable to direct antioxidant activity in vivo does not pay sufficient heed to the fact that polyphenols degrade rapidly, are poorly absorbed and rapidly metabolized, resulting in very low bioavailability. This review explores alternative mechanisms by which polyphenols, or their metabolites, exert biological activity via mechanisms that can be activated by physiologically relevant concentrations. Evidence is presented to support the action of phenolic derivatives on receptors and signalling pathways to induce adaptive responses that drive changes in endogenous antioxidant, antiplatelet, vasodilatory and anti-inflammatory effects. The implications are that in vitro antioxidant measures as predictors of polyphenol protective activity in vivo hold little relevance and that closer attention needs to be paid to bioavailable metabolites to understand the mode of action of these diet-derived components. LINKED ARTICLES: This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.


Asunto(s)
Antioxidantes/farmacología , Enfermedades Cardiovasculares/prevención & control , Polifenoles/farmacología , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacocinética , Disponibilidad Biológica , Dieta , Suplementos Dietéticos , Humanos , Polifenoles/farmacocinética
20.
Food Funct ; 7(6): 2603-14, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27109548

RESUMEN

The Seven Countries Study suggested an association between serum cholesterol and cardiovascular disease (CVD). However, the association was not consistent across the various cohorts of participants in different countries; while it was very clear in US and Northern European cohorts, it was weak in Southern European and Japanese cohorts. Nevertheless, the study triggered research into cholesterol-lowering drug strategies, ultimately leading to the development of statins amongst others. Clinical evidence in support of statins is strong and the vast majority of the medical community advocate these drugs as highly effective first-line therapeutics in primary and secondary prevention of CVD. However, growing evidence of side-effects associated with statins in a significant proportion of patients suggests that these drugs are not a universal solution to CVD. There is a need, therefore, to revisit the evidence and to re-appraise the relative importance of cholesterol amongst many other lipids as potential modulators of atherogenesis. In this review, we assess the relative merits of statin therapy in CVD versus dietary interventions that impact on lipids other than cholesterol, including omega-3 fatty acids and polar lipid fractions of various foods (e.g. fish and olive oil). We conclude that careful design around the lipid components of dietary interventions presents a credible alternative in patients who are intolerant to statins or averse to taking such drugs.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Colesterol/sangre , Dieta , Animales , Antiinflamatorios/farmacología , Enfermedades Cardiovasculares/dietoterapia , Enfermedades Cardiovasculares/tratamiento farmacológico , Ácidos Grasos Omega-3/farmacología , Peces , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Metaanálisis como Asunto , Aceite de Oliva/administración & dosificación , Factor de Activación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Ensayos Clínicos Controlados Aleatorios como Asunto , Alimentos Marinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...