Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 8(6)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580470

RESUMEN

It is commonly assumed that asexual lineages are short-lived evolutionarily, yet many asexual organisms can generate genetic and phenotypic variation, providing an avenue for further evolution. Previous work on the asexual plant pathogen Phytophthora ramorum NA1 revealed considerable genetic variation in the form of Structural Variants (SVs). To better understand how SVs arise and their significance to the California NA1 population, we studied the evolutionary histories of SVs and the forest conditions associated with their emergence. Ancestral state reconstruction suggests that SVs arose by somatic mutations among multiple independent lineages, rather than by recombination. We asked if this unusual phenomenon of parallel evolution between isolated populations is transmitted to extant lineages and found that SVs persist longer in a population if their genetic background had a lower mutation load. Genetic parallelism was also found in geographically distant demes where forest conditions such as host density, solar radiation, and temperature, were similar. Parallel SVs overlap with genes involved in pathogenicity such as RXLRs and have the potential to change the course of an epidemic. By combining genomics and environmental data, we identified an unexpected pattern of repeated evolution in an asexual population and identified environmental factors potentially driving this phenomenon.

2.
PLoS One ; 13(3): e0192502, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29529094

RESUMEN

Phylogenetic relationships between thirteen species of downy mildew and 103 species of Phytophthora (plant-pathogenic oomycetes) were investigated with two nuclear and four mitochondrial loci, using several likelihood-based approaches. Three Phytophthora taxa and all downy mildew taxa were excluded from the previously recognized subgeneric clades of Phytophthora, though all were strongly supported within the paraphyletic genus. Downy mildews appear to be polyphyletic, with graminicolous downy mildews (GDM), brassicolous downy mildews (BDM) and downy mildews with colored conidia (DMCC) forming a clade with the previously unplaced Phytophthora taxon totara; downy mildews with pyriform haustoria (DMPH) were placed in their own clade with affinities to the obligate biotrophic P. cyperi. Results suggest the recognition of four additional clades within Phytophthora, but few relationships between clades could be resolved. Trees containing all twenty extant downy mildew genera were produced by adding partial coverage of seventeen additional downy mildew taxa; these trees supported the monophyly of the BDMs, DMCCs and DMPHs but suggested that the GDMs are paraphyletic in respect to the BDMs or polyphyletic. Incongruence between nuclear-only and mitochondrial-only trees suggests introgression may have occurred between several clades, particularly those containing biotrophs, questioning whether obligate biotrophic parasitism and other traits with polyphyletic distributions arose independently or were horizontally transferred. Phylogenetic approaches may be limited in their ability to resolve some of the complex relationships between the "subgeneric" clades of Phytophthora, which include twenty downy mildew genera and hundreds of species.


Asunto(s)
Peronospora/genética , Filogenia , Phytophthora/genética , Núcleo Celular/genética , Funciones de Verosimilitud , Mitocondrias/genética , Enfermedades de las Plantas/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...