Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Genet Evol ; 94: 105003, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34271187

RESUMEN

Genomic epidemiology of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has provided global epidemiological insight into the COVID-19 pandemic since it began. Sequencing of the virus has been performed at scale, with many countries depositing data into open access repositories to enable in-depth global phylogenetic analysis. To contribute to these efforts, we established an Oxford Nanopore Technologies (ONT) sequencing capability at the National Institutes of Health (NIH), Pakistan. This study highlights multiple SARS-CoV-2 lineages co-circulating during the peak of a second COVID-19 wave in Pakistan (Nov 2020-Feb 2021), with virus origins traced to the United States of America and Saudi Arabia. Ten SARS-CoV-2 positive samples were used for ONT library preparation. Sequence and phylogenetic analysis determined that the patients were infected with lineage B.1.1.250, originally identified in the United Kingdom and Bangladesh during March and April of 2020, and in circulation until the time of this study in Europe, USA and Australia. Lineage B.1.261 was originally identified in Saudi Arabia with widespread local dissemination in Pakistan. One sample clustered with the parental B.1 lineage and the other with lineage B.6 originally from Singapore. In the future, monitoring the evolutionary dynamics of circulating lineages in Pakistan will enable improved tracing of the viral spread, changing trends of their expansion trajectories, persistence, changes in their demographic dynamics, and provide guidance for better implementation of control measures.


Asunto(s)
COVID-19/virología , SARS-CoV-2/aislamiento & purificación , COVID-19/diagnóstico , COVID-19/epidemiología , Humanos , Nasofaringe/virología , Pakistán/epidemiología , Pandemias , Filogenia , ARN Viral/genética , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Secuenciación Completa del Genoma
2.
PLoS One ; 16(6): e0249568, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34185787

RESUMEN

The ongoing COVID-19 pandemic is caused by SARs-CoV-2. The virus is transmitted from person to person through droplet infections i.e. when infected person is in close contact with another person. In January 2020, first report of detection of SARS-CoV-2 in faeces, has made it clear that human wastewater might contain this virus. This may illustrate the probability of environmentally facilitated transmission, mainly the sewage, however, environmental conditions that could facilitate faecal oral transmission is not yet clear. We used existing Pakistan polio environment surveillance network to investigate presence of SARs-CoV-2 using three commercially available kits and E-Gene detection published assay for surety and confirmatory of positivity. A Two-phase separation method is used for sample clarification and concentration. An additional high-speed centrifugation (14000Xg for 30 min) step was introduced, prior RNA extraction, to increase viral RNA yield resulting a decrease in Cq value. A total of 78 wastewater samples collected from 38 districts across Pakistan, 74 wastewater samples from existing polio environment surveillance sites, 3 from drains of COVID-19 infected areas and 1 from COVID 19 quarantine center drainage, were tested for presence of SARs-CoV-2. 21 wastewater samples (27%) from 13 districts turned to be positive on RT-qPCR. SARs-COV-2 RNA positive samples from areas with COVID 19 patients and quarantine center strengthen the findings and use of wastewater surveillance in future. Furthermore, sequence data of partial ORF 1a generated from COVID 19 patient quarantine center drainage sample also reinforce our findings that SARs-CoV-2 can be detected in wastewater. This study finding indicates that SARs-CoV-2 detection through wastewater surveillance has an epidemiologic potential that can be used as supplementary system to monitor viral tracking and circulation in cities with lower COVID-19 testing capacity or heavily populated areas where door-to-door tracing may not be possible. However, attention is needed on virus concentration and detection assay to increase the sensitivity. Development of highly sensitive assay will be an indicator for virus monitoring and to provide early warning signs.


Asunto(s)
Monitoreo del Ambiente , ARN Viral/análisis , SARS-CoV-2/genética , Aguas Residuales/virología , COVID-19/patología , COVID-19/transmisión , COVID-19/virología , Humanos , Pakistán , Poliproteínas/genética , Cuarentena , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/aislamiento & purificación , Proteínas Virales/genética
3.
J Med Virol ; 90(8): 1297-1303, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29704426

RESUMEN

Despite the availability of an effective vaccine, the measles virus continues to cause significant morbidity and mortality in children worldwide. Molecular characterization of wild-type measles strains is an invaluable component of epidemiological studies or surveillance systems that provides important information pertinent to outbreak linkages and transmission pathways. Serum samples and throat swabs were collected from suspected measles cases from the Punjab province of Pakistan (2013-2015) and further tested for measles immunoglobulin M (IgM) through enzyme-linked immunosorbent assay and reverse-transcriptase polymerase chain reaction for molecular characterization. Among the total of 5415 blood samples, 59% tested positive for measles IgM. Males had a higher infection rate (55%) than females (45%), and the highest frequency of positive cases (63%) was found in the age group of 0 to 5 years. Partial sequencing of the nucleoprotein gene showed that 27 strains belonged to the B3 genotype, whereas 2 viruses were identified as D4. On phylogenetic analysis, Pakistani B3 strains were found to be closely related to previously reported indigenous strains and those from neighboring countries of Iran and Qatar. This is the first report on the detection of the measles B3 genotype from Punjab, Pakistan. The current study shows a high burden of measles infections in Punjab province owing to poor routine immunization coverage in major cities. It is imperative that national health authorities adopt strategic steps on an urgent basis for improvement of routine immunization coverage. Molecular epidemiology of the measles viruses circulating in different parts of the country can provide useful data to manage future outbreaks.


Asunto(s)
Brotes de Enfermedades , Genotipo , Virus del Sarampión/clasificación , Virus del Sarampión/genética , Sarampión/epidemiología , Adolescente , Factores de Edad , Anticuerpos Antivirales/sangre , Niño , Preescolar , Transmisión de Enfermedad Infecciosa , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina M/sangre , Lactante , Recién Nacido , Masculino , Virus del Sarampión/aislamiento & purificación , Epidemiología Molecular , Proteínas de la Nucleocápside , Nucleoproteínas/genética , Pakistán/epidemiología , Faringe/virología , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Suero/virología , Factores Sexuales , Proteínas Virales/genética , Adulto Joven
4.
Arch Virol ; 162(12): 3603-3610, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28803415

RESUMEN

Measles continues to be a major public health issue causing substantial outbreaks worldwide, mostly affecting young children. Molecular analysis of measles viruses provides important information on outbreak linkages and transmission pathways that can be helpful towards implementation of appropriate control programs. In Pakistan, the control of measles is still tenuous, and progress towards elimination has been irregular and challenging. In the 2013 measles outbreak we received 4,682 sera collected from suspected patients in 23 districts across Sindh. A total of 3,283 samples were confirmed measles positive using IgM ELISA with the highest infection rate in children aged 1-12 months. Males were more affected than females and a visible peak was observed from January to April. Among the 3,283 cases, 59.1% were unvaccinated, 29.6% had received 1 dose and 10.3% had received 2 doses of measles vaccine while 0.85% had an unknown vaccination status. For genotype detection and phylogenetic analysis, 60 throat swab samples were collected from suspected patients below 15 years of age in eight districts of Sindh province. Forty four (73%; 44/60) throat swab samples were successfully genotyped using RT-PCR. Phylogenetic analyses based on partial sequences of the nucleocapsid protein gene revealed that all Pakistani measles virus strains belonged to genotype B3 and were closely related to those isolated from neighboring countries such as Iran, Afghanistan (99.1-100%) and India with 98.6 - 99.6% nucleotide homology. This is the first report on the phylogenetic analysis of measles B3 genotype strains from Pakistan and highlights the need for strengthening the surveillance systems and improving immunization coverage across the country.


Asunto(s)
Brotes de Enfermedades , Genotipo , Virus del Sarampión/clasificación , Virus del Sarampión/aislamiento & purificación , Sarampión/epidemiología , Sarampión/virología , Adolescente , Adulto , Distribución por Edad , Anticuerpos Antivirales/sangre , Niño , Preescolar , Ensayo de Inmunoadsorción Enzimática , Femenino , Técnicas de Genotipaje , Humanos , Inmunoglobulina M/sangre , Lactante , Masculino , Vacuna Antisarampión/administración & dosificación , Virus del Sarampión/genética , Persona de Mediana Edad , Pakistán/epidemiología , Filogenia , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Factores Sexuales , Vacunación/estadística & datos numéricos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...