Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(2)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38391675

RESUMEN

This review emphasizes the significance of formulating control strategies for biological and advanced oxidation process (AOP)-based wastewater treatment systems. The aim is to guarantee that the effluent quality continuously aligns with environmental regulations while operating costs are minimized. It highlights the significance of understanding the dynamic behaviour of the process in developing effective control schemes. The most common process control strategies in wastewater treatment plants (WWTPs) are explained and listed. It is emphasized that the proper control scheme should be selected based on the process dynamic behaviour and control goal. This study further discusses the challenges associated with the control of wastewater treatment processes, including inadequacies in developed models, the limitations of most control strategies to the simulation stage, the imperative requirement for real-time data, and the financial and technical intricacies associated with implementing advanced controller hardware. It is discussed that the necessity of the availability of real-time data to achieve reliable control can be achieved by implementing proper, accurate hardware sensors in suitable locations of the process or by developing and implementing soft sensors. This study recommends further investigation on available actuators and the criteria for choosing the most appropriate one to achieve robust and reliable control in WWTPs, especially for biological and AOP-based treatment approaches.

2.
Bioengineering (Basel) ; 10(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37760119

RESUMEN

High-strength wastewaters from a variety of sources, including the food industry, domestic septage, and landfill leachate, are often hauled to municipal wastewater treatment plants (WWTPs) for co-treatment. Due to their high organic loadings, these wastewaters can cause process upsets in both a WWTP's liquid and solids treatment trains and consume organic treatment capacity, leaving less capacity available to service customers in the catchment area. A novel pre-treatment method, the Waste Activated Sludge-High Rate (WASHR) process, is proposed to optimize the co-treatment of high-strength wastewaters. The WASHR process combines the contact stabilization and sequencing batch reactor processes. It utilizes waste activated sludge from a municipal WWTP as its biomass source, allowing for a rapid start-up. Bench-scale treatment trials of winery wastewater confirm the WASHR process can reduce loadings on the downstream WWTP's liquid and solids treatment trains. A case study approach is used to confirm the economic viability and environmental sustainability of the WASHR process compared to direct co-treatment, using life-cycle cost analyses and greenhouse gas emissions estimates.

3.
ACS Omega ; 6(5): 3644-3658, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33585745

RESUMEN

Considering that functional magnetite (Fe3O4) nanoparticles with exceptional physicochemical properties can be highly applicable in different fields, scaling-up strategies are becoming important for their large-scale production. This study reports simulations of scaled-up production of citric acid-coated magnetite nanoparticles (Fe3O4-cit), aiming to evaluate the potential environmental impacts (PEIs) and the exergetic efficiency. The simulations were performed using the waste reduction algorithm and the Aspen Plus software. PEI and energy/exergy performance are calculated and quantified. The inlet and outlet streams are estimated by expanding the mass and energy flow, setting operating parameters of processing units, and defining a thermodynamic model for properties estimation. The high environmental performance of the production process is attributed to the low outlet rate of PEI compared to the inlet rate. The product streams generate low PEI contribution (-3.2 × 103 PEI/y) because of the generation of environmentally friendlier substances. The highest results in human toxicity potential (3.2 × 103 PEI/y), terrestrial toxicity potential (3.2 × 103 PEI/y), and photochemical oxidation potential (2.6 × 104 PEI/y) are attributed to the ethanol within the waste streams. The energy source contribution is considerably low with 27 PEI/y in the acidification potential ascribed to the elevated levels of hydrogen ions into the atmosphere. The global exergy of 1.38% is attributed to the high irreversibilities (1.7 × 105 MJ/h) in the separation stage, especially, to the centrifuge CF-2 (5.07%). The sensitivity analysis establishes that the global exergy efficiency increases when the performance of the centrifuge CF-2 is improved, suggesting to address enhancements toward low disposal of ethanol in the wastewater.

4.
Polymers (Basel) ; 13(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466703

RESUMEN

The presence of a surface preferably attracting one component of a polymer mixture by the long-range van der Waals surface potential while the mixture undergoes phase separation by spinodal decomposition is called long-range surface-directed spinodal decomposition (SDSD). The morphology achieved under SDSD is an enrichment layer(s) close to the wall surface and a droplet-type structure in the bulk. In the current study of the long-range surface-directed polymerization-induced phase separation, the surface-directed spinodal decomposition of a monomer-solvent mixture undergoing self-condensation polymerization was theoretically simulated. The nonlinear Cahn-Hilliard and Flory-Huggins free energy theories were applied to investigate the phase separation phenomenon. The long-range surface potential led to the formation of a wetting layer on the surface. The thickness of the wetting layer was found proportional to time t*1/5 and surface potential parameter h 1 1/5. A larger diffusion coefficient led to the formation of smaller droplets in the bulk and a thinner depletion layer, while it did not affect the thickness of the enrichment layer close to the wall. A temperature gradient imposed in the same direction of long-range surface potential led to the formation of a stripe morphology near the wall, while imposing it in the opposite direction of surface potential led to the formation of large particles at the high-temperature side, the opposite side of the interacting wall.

5.
Mater Sci Eng C Mater Biol Appl ; 118: 111430, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33255025

RESUMEN

A hybrid scaffold of gelatin-glycosaminoglycan matrix and fibrin (FGG) has been synthesized to improve the mechanical properties, degradation time and cell response of fibrin-like scaffolds. The FGG scaffold was fabricated by optimizing some properties of fibrin-only gel and gelatin-glycosaminoglycan (GG) scaffolds. Mechanical analysis of optimized fibrin-only gel showed the Young module and tensile strength of up to 72 and 121 KPa, respectively. Significantly, the nine-fold increase in the Young modulus and a seven-fold increase in tensile strength was observed when fibrin reinforced with GG scaffold. Additionally, the results demonstrated that the degradation time of fibrin was enhanced successfully up to 7 days which was much longer time compared to fibrin-only gel with 38 h of degradation time. More than 45% of FGG initial mass was preserved on day 7 in the presence of aprotinin. Human corneal fibroblast cells (HCFCs) were seeded on the FGG, fibrin-only gel and GG scaffolds for 5 days. The FGG scaffold showed excellent cell viability over 5 days, and the proliferation of HCFCs also increased significantly in comparison with fibrin-only gel and GG scaffolds. The FGG scaffold illustrates the great potential to use in which appropriate stability and mechanical properties are essential to tissue functionality.


Asunto(s)
Fibrina , Gelatina , Fibroblastos , Glicosaminoglicanos , Humanos , Ingeniería de Tejidos , Andamios del Tejido
7.
ACS Omega ; 5(30): 18710-18730, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32775873

RESUMEN

The incorporation of sustainability aspects into the design of chemical processes has been increasing since the last century. Hence, there are several proposed methodologies and indicators to assess chemical facilities through process analysis techniques. A comprehensive assessment involving economic, environmental, safety, and exergy parameters of two alternatives for butanol production from Manihot esculenta Crantz (cassava waste) is presented in this study. The modeling of process topologies involved using Aspen Plus software. Topology 1 generated a product flow rate of 316,477 t/y of butanol, while this value was 367,037 t/y for topology 2. Both processes used a feed flow of 3,131,439 t/y of biomass. This study used seven technical indicators to evaluate both alternatives, which include the return of investment, discounted payback period, global warming potential, renewability material index, inherent safety index, exergy efficiency, and exergy of waste ratio. Otherwise, this study implemented an aggregate index to assess overall sustainability performance. The results revealed that topology 2 presented higher economic normalized scores for evaluated indicators, but the most crucial difference between these designs came from the safety and exergetic indexes. Topology 1 and topology 2 obtained weighted scores equaling to 0.48 and 0.53; therefore, this study found that the second alternative gives a more sustainable design for butanol production under evaluated conditions.

8.
Environ Sci Pollut Res Int ; 27(36): 45650-45660, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32803605

RESUMEN

Doping a transition metal into photocatalysts enhances the photocatalytic activity drastically. In the first part of this study, Taguchi design of experiment is applied to evaluate and optimize the efficiency of the Fe2O3/TiO2 photocatalyst synthetized by thermal method assisted by UV radiation. The contribution percentages of Fe:TiO2 mass ratio, Fe2O3/TiO2 dosage, and pH on the total organic carbon (TOC) removal are determined using analysis of variance (ANOVA). In the second part of this study, in order to model the photocatalytic degradation process, the optical properties of the photocatalyst, including the extinction, absorption, and scattering coefficients, are determined. Subsequently, the radiation transfer equation (RTE) is solved numerically based on the surface emission model using the discrete ordinate method. Furthermore, a rigorous model, including chemical reaction rates, radiation transfer, and mass transfer is proposed and validated by a set of experimental data. A satisfactory correlation between the predicted and experimental data with less than 5% error confirms the reliability of the model. The intrinsic kinetic parameters are also determined by comparing predicted values to those of the experimental results by applying non-linear regressions.


Asunto(s)
Titanio , Compuestos Azo , Catálisis , Fotólisis , Reproducibilidad de los Resultados
9.
RSC Adv ; 10(64): 39284-39294, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-35518424

RESUMEN

Creating novel and innovative nanostructures is a challenge, aiming to discover nanomaterials with promising properties for environmental remediation. In this study, the physicochemical and adsorption properties of a heterogeneous nanostructure are evaluated for the rapid removal of heavy metal ions from aqueous solutions. Core-shell nanostructures are prepared using iron oxide cores and silica dioxide shells. The core is synthesized via the co-precipitation method and modified in situ with citric acid to grow a carboxyl layer. The shell was hydrolyzed/condensed and then functionalized with amine groups for ds-DNA condensation via electrostatic interaction. The characterization techniques revealed functional FeO@SiO2-DNA nanostructures with good crystallinity and superparamagnetic response (31.5 emu g-1). The predominant superparamagnetic nature is attributed to the citric acid coating. This improves the dispersion and stability of the magnetic cores through the reduction of the dipolar-dipolar interaction and the enhancement of the spin coordination. The rapid adsorption mechanism of FeO@SiO2-DNA was evaluated through the removal of Pb(ii), As(iii), and Hg(ii). A rapid adsorption rate is observed in the first 15 min, attributed to a heterogeneous chemisorption mechanism based on electrostatic interactions. FeO@SiO2-DNA shows higher adsorption efficiency of 69% for Pb(ii) removal compared to As(iii) (51%) and Hg(ii) (41%). The selectivity towards Pb(ii) is attributed to the similar acid nature to ds-DNA, where the ionic strength interaction provides good affinity and stability. The facile synthesis and rapid adsorption suggest a promising nanostructure for the remediation of water sources contaminated with heavy metal ions and can be extended to other complex molecules.

10.
Polymers (Basel) ; 11(6)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234421

RESUMEN

In this study, the self-condensation polymerization of a tri-functional monomer in a monomer-solvent mixture and the phase separation of the system were simultaneously modeled and simulated. Nonlinear Cahn-Hilliard and Flory-Huggins free energy theories incorporated with the kinetics of the polymerization reaction were utilized to develop the model. Linear temperature and concentration gradients singly and in combination were applied to the system. Eight cases which faced different ranges of initial concentration and/or temperature gradients in different directions, were studied. Various anisotropic structural morphologies were achieved. The numerical results were in good agreement with published data. The size analysis and structural characterization of the phase-separated system were also carried out using digital imaging software. The results showed that the phase separation occurred earlier in the section with a higher initial concentration and/or temperature, and, at a given time, the average equivalent diameter of the droplets was larger in this region. While smaller droplets formed later in the lower concentration/temperature regions, at the higher concentration/temperature side, the droplets went through phase separation longer, allowing them to reach the late stage of the phase separation where particles coarsened. In the intermediate stage of phase separation, was found proportional to t*α, where α was in the range between 1/3 and 1/2 for the cases studied and was consistent with published results.

11.
J Environ Sci (China) ; 66: 81-93, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29628111

RESUMEN

A nitrogen-doped titanium dioxide composite photocatalyst (N-TiO2) with heterojunction structures is synthesized by three different approaches: a novel UV-assisted thermal synthesis, annealing, and microwave technique. Photocatalytic activities of synthesized photocatalysts are evaluated by the degradation of Methyl Orange under ultraviolet light types A (UV-A), B (UV-B), and C (UV-C), visible light, and direct sunlight irradiation. Results show that by using N-TiO2 photocatalyst prepared by the UV-assisted thermal synthesis and annealing, the degradation increases by 16.5% and 20.4%, respectively, compared to that by bare TiO2. The best results are obtained at a nitrogen to TiO2 mass ratio of 0.15 (N:TiO2). The enhancement of the photocatalytic activity observed in the visible range is mainly attributed to the increasing separation rate of photogenerated charge carriers. The novel UV-assisted thermal synthesis has produced encouraging results as a preparation method for the nitrogen-doped TiO2 photocatalyst; thus, further studies are recommended for process optimization, immobilization, and scale-up to evaluate its applicability in wastewater treatment.


Asunto(s)
Compuestos Azo/química , Modelos Químicos , Titanio/química , Nitrógeno/química , Fotólisis , Rayos Ultravioleta
12.
Artículo en Inglés | MEDLINE | ID: mdl-29172962

RESUMEN

In this study, the treatment of mature landfill leachate is evaluated by oxidation with hydrogen peroxide (H2O2) combined with adsorption in a granular activated carbon (GAC) fixed bed column to determinate the increase in the biodegradability index, the reduction of chemical oxygen demand (COD) as well as the increase in the useful life of the GAC bed. The sample leachate from Loma de Los Cocos Landfill (Cartagena de Indias, Colombia) has a very low biodegradability ratio ranging from 0.034 to 0.048 that makes it difficult to meet the required water quality level according to the regulations. The COD removal is initially monitored in the H2O2 oxidation treatment process. The operating conditions such as pH, H2O2 dosage, and the reaction time are optimized in this process based on the percentage of COD removal. A maximum COD removal of 29.9% is achieved at an initial H2O2 concentration of 5000 mg L-1 with a pH of 8 and the reaction time of 60 min. The hybrid treatment by H2O2-GAC achieved 97.3% COD removal and 116% increase in the biodegradability ratio (from 0.072 to 0.134) while this ratio was increased by 6.5% with H2O2 alone. Moreover, the useful life of the GAC bed is increased from 45 min in the column fed with raw leachate to 170 min in the column fed with pretreated leachate and 5000 mg L-1 of H2O2 at pH of 8 that subsequently increased the activated carbon adsorption capacity. An adsorption model for leachate treated with H2O2 is also developed.


Asunto(s)
Carbón Orgánico/química , Restauración y Remediación Ambiental/métodos , Peróxido de Hidrógeno/química , Contaminantes Químicos del Agua/química , Adsorción , Análisis de la Demanda Biológica de Oxígeno , Colombia , Restauración y Remediación Ambiental/instrumentación , Oxidación-Reducción , Instalaciones de Eliminación de Residuos
13.
J Environ Sci Health B ; 52(5): 314-325, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28277086

RESUMEN

In this study, a three-factor, three-level Box-Behnken design with response surface methodology were used to maximize the TOC removal and minimize the H2O2 residual in the effluent of the combined UV-C/H2O2-VUV system for the treatment of an actual slaughterhouse wastewater (SWW) collected from one of the meat processing plants in Ontario, Canada. The irradiation time and the initial concentrations of total organic carbon (TOCo) and hydrogen peroxide (H2O2o) were the three predictors, as independent variables, studied in the design of experiments. The multiple response approach was used to obtain desirability response surfaces at the optimum factor settings. Subsequently, the optimum conditions to achieve the maximum percentage TOC removal of 46.19% and minimum H2O2 residual of 1.05% were TOCo of 213 mg L-1, H2O2o of 450 mg L-1, and irradiation time of 9 min. The attained optimal operating conditions were validated with a complementary test. Consequently, the TOC removal of 45.68% and H2O2 residual of 1.03% were achieved experimentally, confirming the statistical model reliability. Three individual processes, VUV alone, VUV/H2O2, and UV-C/H2O2, were also evaluated to compare their performance for the treatment of the actual SWW using the optimum parameters obtained in combined UV-C/H2O2-VUV processes. Results confirmed that an adequate combination of the UV-C/H2O2-VUV processes is essential for an optimized TOC removal and H2O2 residual. Finally, respirometry analyses were also performed to evaluate the biodegradability of the SWW and the BOD removal efficiency of the combined UV-C/H2O2-VUV processes.


Asunto(s)
Peróxido de Hidrógeno/química , Eliminación de Residuos Líquidos/métodos , Mataderos , Biodegradación Ambiental , Carbono/análisis , Peróxido de Hidrógeno/análisis , Oxidación-Reducción , Fotobiorreactores , Reproducibilidad de los Resultados , Rayos Ultravioleta , Eliminación de Residuos Líquidos/instrumentación , Aguas Residuales/química
14.
J Environ Manage ; 196: 487-498, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28343050

RESUMEN

The inadequate management practices in industrial textile effluents have a considerable negative impact on the environment and human health due to the indiscriminate release of dyes. Photocatalysis is one of the diverse advance oxidation processes (AOPs) and titanium dioxide (TiO2) is recognized for its high oxidation and reduction power. A composite photocatalyst of Fe2O3/TiO2 is synthesized using different mass ratios of Fe:TiO2 to improve its photoactivity. The composite photocatalyst is calcined at 300-900 °C. Their photocatalytic activity for the degradation of Congo red (CR) and methyl orange (MO) is investigated by total organic carbon (TOC) analysis. The formation and characterization of the as-prepared composite are studied by scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS). The effect of calcination temperature on the composite Fe2O3/TiO2 photocatalyst is investigated using Fourier transform infrared spectroscopy (FTIR). The photocatalytic activity and the phase conversion are studied by X-ray diffraction (XRD). The specific surface area of photocatalysts at different calcination temperatures is investigated based on Brunauer-Emmett-Teller (BET) surface area analysis. Results show that at an optimum calcination temperature of 300 °C for the photocatalyst preparation, the specific surface area is maximum and the photocatalyst has the highest photoactivity. Thus, the degradation of organic materials reaches 62.0% for MO and 46.8% for CR in the presence of Fe2O3/TiO2 (0.01 w:w Fe:TiO2) calcined at 300 °C with the highest specific surface area (98.73 m2/g). The transformation of TiO2 from anatase to rutile is facilitated by high temperature and high concentration of iron while high crystallization and particle size increase occur. An optimum calcination temperature of 300 °C is found at which the degradation of typical dyes in textile industries is maximum.


Asunto(s)
Colorantes , Industria Textil , Purificación del Agua , Catálisis , Compuestos Férricos , Temperatura , Titanio
15.
J Environ Manage ; 182: 651-666, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27568982

RESUMEN

Biological and advanced oxidation processes are combined to treat an actual slaughterhouse wastewater (SWW) by a sequence of an anaerobic baffled reactor, an aerobic activated sludge reactor, and a UV/H2O2 photoreactor with recycle in continuous mode at laboratory scale. In the first part of this study, quadratic modeling along with response surface methodology are used for the statistical analysis and optimization of the combined process. The effects of the influent total organic carbon (TOC) concentration, the flow rate, the pH, the inlet H2O2 concentration, and their interaction on the overall treatment efficiency, CH4 yield, and H2O2 residual in the effluent of the photoreactor are investigated. The models are validated at different operating conditions using experimental data. Maximum TOC and total nitrogen (TN) removals of 91.29 and 86.05%, respectively, maximum CH4 yield of 55.72%, and minimum H2O2 residual of 1.45% in the photoreactor effluent were found at optimal operating conditions. In the second part of this study, continuous distribution kinetics is applied to establish a mathematical model for the degradation of SWW as a function of time. The agreement between model predictions and experimental values indicates that the proposed model could describe the performance of the combined anaerobic-aerobic-UV/H2O2 processes for the treatment of SWW. In the final part of the study, the optimized combined anaerobic-aerobic-UV/H2O2 processes with recycle were evaluated using a cost-effectiveness analysis to minimize the retention time, the electrical energy consumption, and the overall incurred treatment costs required for the efficient treatment of slaughterhouse wastewater effluents.


Asunto(s)
Mataderos , Oxidación-Reducción , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/análisis , Análisis de la Demanda Biológica de Oxígeno , Análisis Costo-Beneficio , Diseño de Equipo , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/química , Industrias , Productos de la Carne , Metano/análisis , Nitrógeno/análisis , Oxígeno/química , Aguas del Alcantarillado , Programas Informáticos , Rayos Ultravioleta
16.
Environ Technol ; 37(21): 2731-42, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27088453

RESUMEN

The performance of batch and fed-batch photoreactors with that of continuous photoreactor for the treatment of aqueous polyvinyl alcohol (PVA) solutions is compared. Hydrogen peroxide feeding strategies, residence time, and [H2O2]/[PVA] mass ratio are examined for their impacts on the molecular weight distribution (MWD) of PVA and the total organic carbon (TOC) removal. The results prove that a continuous addition of H2O2 during the degradation reaction ensures the utilization of the produced radicals to minimize the oxidant consumption and maximize the TOC removal and the PVA degradation in a short irradiation time. Also, the MWD of PVA is found to be bimodal and shifted towards lower molecular weights with small shoulder peak indicating a progressive disappearance of the higher molecular weight fractions that is in accordance with the random chains scission mechanism. Besides, the hydrogen peroxide feeding strategies are found to have a great effect on the reduction in H2O2 residuals in the effluent.


Asunto(s)
Peróxido de Hidrógeno/química , Alcohol Polivinílico/química , Purificación del Agua/métodos , Procesos Fotoquímicos , Alcohol Polivinílico/análisis , Alcohol Polivinílico/efectos de la radiación , Rayos Ultravioleta , Aguas Residuales
17.
Artículo en Inglés | MEDLINE | ID: mdl-27128152

RESUMEN

Degradation and mineralization of aqueous methylene blue (MB) are investigated in a bench scale external loop airlift sonophotoreactor. A central composite design along with response surface methodology is employed to model and optimize the sonophotolytic process. A quadratic empirical expression between responses and independent variables (pH and initial concentrations of H2O2 and MB) is derived. The efficiencies of the system for the MB degradation after 10, 15, and 30 min, and total organic carbon reduction after 150 min are considered as responses. The analysis of variance performed high values for the coefficient of determination R(2) and adjusted R(2) for all four responses. Optimum values of process variables for the maximum degradation and mineralization efficiency are pH 6.6 and initial concentrations of H2O2 and MB are 1,280 and 10.56 mg/L, respectively. With optimal operating conditions, 99.93% and 55.32% MB removal (after 10 min) and TOC reduction (after 150 min) are achieved, respectively. Artificial neural networks are also used to model the experimental data. The respirometric study is conducted to compare the biodegradability of untreated and sonophotolytically pre-treated MB solutions at different reaction times. Pre-treated solutions at 180, 240, and 300 min performed higher biodegradability compared to those of untreated MB solutions.


Asunto(s)
Azul de Metileno/química , Fotobiorreactores , Carbono/química , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Modelos Teóricos , Redes Neurales de la Computación , Fotoquímica , Ultrasonido , Rayos Ultravioleta
18.
Artículo en Inglés | MEDLINE | ID: mdl-26818608

RESUMEN

Constructed wetlands have become an attractive alternative for wastewater treatment. However, there is not a globally accepted mathematical model to predict their performance. In this study, the VS2DTI software was used to predict the effluent biochemical oxygen demand (BOD) and total nitrogen (TN) in a pilot-scale vertical flow constructed wetland (VFCW) treating domestic wastewater. After a 5-week adaptation period, the pilot system was monitored for another 6 weeks. Experiments were conducted at hydraulic retention times (HRTs) in the range of 2-4 days with Typha latifolia as the vegetation. The raw wastewater concentrations ranged between 144-430 and 122-283 mg L(-1) for BOD5 and TN, respectively. A first-order kinetic model coupled with the advection/dispersion and Richards' equations was proposed to predict the removal rates of BOD5 and TN from domestic wastewater. Two main physical processes were modeled in this study, porous material water flow and solute transport through the different layers of the VFCW to simulate the constructed wetland (CW) conditions. The model was calibrated based on the BOD5 and TN degradation constants. The model indicated that most of BOD and TN (88 and 92%, respectively) were removed through biological activity followed by adsorption. It was also observed that the evapotranspiration was seen to have a smaller impact. An additional data series of effluent BOD and TN was used for model validation. The residual analysis of the calibrated model showed a relatively random pattern, indicating a decent fit. Thus, the VS2DTI was found to be a useful tool for CW simulation.


Asunto(s)
Desnitrificación , Nitrógeno/metabolismo , Typhaceae/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Humedales , Colombia , Modelos Teóricos , Nitrógeno/análisis , Proyectos Piloto , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
19.
J Environ Manage ; 161: 287-302, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26197423

RESUMEN

A thorough review of advancement in slaughterhouse wastewater (SWW) characteristics, treatment, and management in the meat processing industry is presented. This study also provides a general review of the environmental impacts, health effects, and regulatory frameworks relevant to the SWW management. A significant progress in high-rate anaerobic treatment, nutrient removal, advanced oxidation processes (AOPs), and the combination of biological treatment and AOPs for SWW treatment is highlighted. The treatment processes are described and few examples of their applications are given. Conversely, few advances are accounted in terms of waste minimization and water use reduction, reuse, and recycle in slaughterhouses, which may offer new alternatives for cost-effective waste management. An overview of the most frequently applied technologies and combined processes for organic and nutrient removal during the last decade is also summarized. Several types of individual and combined processes have been used for the SWW treatment. Nevertheless, the selection of a particular technology depends on the characteristics of the wastewater, the available technology, and the compliance with regulations. This review facilitates a better understanding of current difficulties that can be found during production and management of the SWW, including treatment and characteristics of the final effluent.


Asunto(s)
Mataderos , Industria de Procesamiento de Alimentos/métodos , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/análisis , Carne , Oxidación-Reducción , Aguas Residuales/química
20.
J Environ Manage ; 150: 128-137, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25460426

RESUMEN

The merits of the sonophotolysis as a combination of sonolysis (US) and photolysis (UV/H2O2) are investigated in a pilot-scale external loop airlift sonophotoreactor for the treatment of a synthetic pharmaceutical wastewater (SPWW). In the first part of this study, the multivariate experimental design is carried out using Box-Behnken design (BBD). The effluent is characterized by the total organic carbon (TOC) percent removal as a surrogate parameter. The results indicate that the response of the TOC percent removal is significantly affected by the synergistic effects of the linear term of H2O2 dosage and ultrasound power with the antagonistic effect of quadratic term of H2O2 dosage. The statistical analysis of the results indicates a satisfactory prediction of the system behavior by the developed model. In the second part of this study, a novel rigorous mathematical model for the sonophotolytic process is developed to predict the TOC percent removal as a function of time. The mathematical model is based on extensively accepted sonophotochemical reactions and the rate constants in advanced oxidation processes. A good agreement between the model predictions and experimental data indicates that the proposed model could successfully describe the sonophotolysis of the pharmaceutical wastewater.


Asunto(s)
Industria Farmacéutica , Residuos Industriales , Preparaciones Farmacéuticas/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Humanos , Modelos Estadísticos , Fotólisis , Ultrasonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...