Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicol Pathol ; 50(6): 736-753, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36000561

RESUMEN

In nonclinical toxicity studies, stage-aware evaluation is often expected to assess drug-induced testicular toxicity. Although stage-aware evaluation does not require identification of specific stages, it is important to understand microscopic features of spermatogenic staging. Staging of the spermatogenic cycle in dogs is a challenging and time-consuming process. In this study, we first defined morphologic features for the eight spermatogenic stages in standard histology sections (H&E slides) of dog testes. For image analysis, we defined the key morphologic features of five stages/pooled stage groups (I-II, III-IV, V, VI-VII, and VIII). These criteria were used to develop a deep learning (DL) algorithm for staging of the spermatogenic cycle of control dog testes using whole slide images. In addition, a DL-based nucleus segmentation model was trained to detect and quantify the number of different germ cells, including spermatogonia, spermatocytes, and spermatids. Identification of spermatogenic stages and quantification of germ cell populations were successfully automated by the DL models. Combining these two algorithms provided color-coding visual spermatogenic staging and quantitative information on germ cell populations at specific stages that would facilitate the stage-aware evaluation and detection of changes in germ cell populations in nonclinical toxicity studies.


Asunto(s)
Aprendizaje Profundo , Animales , Perros , Masculino , Espermátides/ultraestructura , Espermatogénesis , Testículo/patología
2.
Biomed Opt Express ; 13(8): 4338-4352, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36032582

RESUMEN

Though angiogenesis has been investigated in depth, vascular regression and rarefaction remain poorly understood. Regression of renal vasculature accompanies many pathological states such as diabetes, hypertension, atherosclerosis, and radiotherapy. Radiation decreases microvessel density in multiple organs, though the mechanism is not known. By using a whole animal (rat) model with a single dose of partial body irradiation to the kidney, changes in the volume of renal vasculature were recorded at two time points, 60 and 90 days after exposure. Next, a novel vascular and metabolic imaging (VMI) technique was used to computationally assess 3D vessel diameter, volume, branch depth, and density over multiple levels of branching down to 70 µm. Four groups of rats were studied, of which two groups received a single dose of 12.5 Gy X-rays. The kidneys were harvested after 60 or 90 days from one irradiated and one non-irradiated group at each time point. Measurements of the 3D vasculature showed that by day-90 post-radiation, when renal function is known to deteriorate, total vessel volume, vessel density, maximum branch depth, and the number of terminal points in the kidneys decreased by 55%, 57%, 28%, and 53%, respectively. Decreases in the same parameters were not statistically significant at 60 days post-irradiation. Smaller vessels with internal diameters of 70-450 µm as well as large vessels of diameter 451-850 µm, both decreased by 90 days post-radiation. Vascular regression in the lungs of the same strain of irradiated rats has been reported to occur before 60 days supporting the hypothesis that this process is regulated in an organ-specific manner and occurs by a concurrent decrease in luminal diameters of small as well as large blood vessels.

3.
J Pathol Inform ; 12: 42, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34881097

RESUMEN

Whole slide imaging enables the use of a wide array of digital image analysis tools that are revolutionizing pathology. Recent advances in digital pathology and deep convolutional neural networks have created an enormous opportunity to improve workflow efficiency, provide more quantitative, objective, and consistent assessments of pathology datasets, and develop decision support systems. Such innovations are already making their way into clinical practice. However, the progress of machine learning - in particular, deep learning (DL) - has been rather slower in nonclinical toxicology studies. Histopathology data from toxicology studies are critical during the drug development process that is required by regulatory bodies to assess drug-related toxicity in laboratory animals and its impact on human safety in clinical trials. Due to the high volume of slides routinely evaluated, low-throughput, or narrowly performing DL methods that may work well in small-scale diagnostic studies or for the identification of a single abnormality are tedious and impractical for toxicologic pathology. Furthermore, regulatory requirements around good laboratory practice are a major hurdle for the adoption of DL in toxicologic pathology. This paper reviews the major DL concepts, emerging applications, and examples of DL in toxicologic pathology image analysis. We end with a discussion of specific challenges and directions for future research.

4.
IEEE J Transl Eng Health Med ; 9: 1800407, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34462673

RESUMEN

BACKGROUND: Mitochondrial [Formula: see text]-oxidation of fatty acids is the primary energy source for the heart and carried out by Hydroxy Acyl-CoA Dehydrogenase (HADH) encoded trifunctional protein. Mutations in the genes encoding mitochondrial proteins result in functionally defective protein complexes that contribute to energy deficiencies, excessive reactive oxygen species (ROS) production, and accumulation of damaged mitochondria. We hypothesize that a dramatic alternation in redox state and associated mitochondrial dysfunction is the underlying cause of Fatty Acid Oxidation (FAO) deficiency mutant, resulting in heart failure. Mitochondrial co-enzymes, NADH and FAD, are autofluorescent metabolic indices of cells when imaged, yield a quantitative assessment of the cells' redox status and, in turn, that of the tissue and organ. METHOD: We utilized an optical cryo-imager to quantitively evaluate the three-dimensional distribution of mitochondrial redox state in newborn rats' hearts and kidneys. Redox ratio (RR) assessment shows that mitochondrial dysfunction is extreme and could contribute to severe heart problems and eventual heart failure in the mutants. RESULTS: Three-dimensional redox ratio (NADH/FAD) rendering, and the volumetric mean value calculations confirmed significantly decreased cardiac RR in mutants by 31.90% and 12.32%, in renal mitochondrial RR compared to wild-type control. Further, histological assessment of newborn heart myocardial tissue indicated no significant difference in myocardial tissue architecture in both control and severe (HADHAe4-/-) conditions. CONCLUSION: These results demonstrate that optical imaging can accurately estimate the redox state changes in newborn rat organs. It is also apparent that the FAO mutant's heart tissue with a low redox ratio is probably more vulnerable to cumulative damages than kidneys and fails prematurely, contributing to sudden death.


Asunto(s)
Mitocondrias , Miocardio , Acil-CoA Deshidrogenasa/metabolismo , Animales , Animales Recién Nacidos , Mitocondrias/metabolismo , Miocardio/metabolismo , Oxidación-Reducción , Ratas
5.
J Biomed Opt ; 26(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34240589

RESUMEN

SIGNIFICANCE: Three-dimensional (3D) vascular and metabolic imaging (VMI) of whole organs in rodents provides critical and important (patho)physiological information in studying animal models of vascular network. AIM: Autofluorescence metabolic imaging has been used to evaluate mitochondrial metabolites such as nicotinamide adenine dinucleotide (NADH) and flavine adenine dinucleotide (FAD). Leveraging these autofluorescence images of whole organs of rodents, we have developed a 3D vascular segmentation technique to delineate the anatomy of the vasculature as well as mitochondrial metabolic distribution. APPROACH: By measuring fluorescence from naturally occurring mitochondrial metabolites combined with light-absorbing properties of hemoglobin, we detected the 3D structure of the vascular tree of rodent lungs, kidneys, hearts, and livers using VMI. For lung VMI, an exogenous fluorescent dye was injected into the trachea for inflation and to separate the airways, confirming no overlap between the segmented vessels and airways. RESULTS: The kidney vasculature from genetically engineered rats expressing endothelial-specific red fluorescent protein TdTomato confirmed a significant overlap with VMI. This approach abided by the "minimum work" hypothesis of the vascular network fitting to Murray's law. Finally, the vascular segmentation approach confirmed the vascular regression in rats, induced by ionizing radiation. CONCLUSIONS: Simultaneous vascular and metabolic information extracted from the VMI provides quantitative diagnostic markers without the confounding effects of vascular stains, fillers, or contrast agents.


Asunto(s)
Imagenología Tridimensional , NAD , Animales , Flavina-Adenina Dinucleótido , Mitocondrias , Imagen Óptica , Ratas
6.
Methods Mol Biol ; 2276: 259-270, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34060048

RESUMEN

Mitochondrial dysfunction contributes to various injuries and diseases. A mechanistic understanding of how dysfunctional mitochondria modulates metabolism is of paramount importance. Three-dimensional (3D) optical cryo-imager is a custom-designed device that can quantify the volumetric bioenergetics of organs in small animal models. The instrument captures the autofluorescence of bioenergetics indices (NADH and FAD) from tissues at cryogenic temperature. The quantified redox ratio (NADH/FAD) is used as an optical indicator of mitochondrial redox state.


Asunto(s)
Flavina-Adenina Dinucleótido/análisis , Imagenología Tridimensional/métodos , Riñón/química , Mitocondrias/química , NAD/análisis , Imagen Óptica/métodos , Animales , Criopreservación , Metabolismo Energético , Flavina-Adenina Dinucleótido/metabolismo , Secciones por Congelación , Riñón/metabolismo , Riñón/patología , Mitocondrias/metabolismo , Mitocondrias/patología , NAD/metabolismo , Oxidación-Reducción
7.
Quant Imaging Med Surg ; 11(1): 107-118, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33392015

RESUMEN

BACKGROUND: Photobiomodulation (PBM) by far-red (FR) to near-infrared (NIR) light has been demonstrated to accelerate diabetic wound healing in preclinical and clinical studies. Mitochondrial dysfunction and oxidative stress play key roles in impaired diabetic wound healing, and the effect of PBM on the metabolic state of diabetic wounds remains to be elucidated. METHODS: In this study, a custom-designed in vivo fluorescence imaging technique was used to quantitatively assess the effect of FR-PBM on the mitochondrial bioenergetics of diabetic wounds. The intrinsic fluorescence of two mitochondrial co-enzymes, nicotinamide adenine dinucleotide (NADH) and oxidized flavin adenine dinucleotide (FAD), was monitored to quantify the redox ratio (RR) (NADH/FAD) of wounds over time. RESULTS: Using an excisional model of wound healing, we demonstrated that 670 nm (FR) PBM improved mitochondrial bioenergetics and stimulated the rate of wound healing in diabetic db/db mice. Wound closure and the RR of diabetic wounds in response to 670 nm PBM (4.5 J/cm2, 60 mW/cm2 for 90 s per day, 5 days/week) were compared to the sham-treated group. At day 9 of post-wounding, we observed a 43% decrease in the wound area and a 75% increase in RR in FR-treated diabetic mice compared to sham-treated diabetic mice. CONCLUSIONS: We conclude that the increase in mitochondrial RR and the related decrease in oxidative stress may be an important factor in FR-PBM mediated acceleration of wound healing in diabetic mice.

8.
Sci Rep ; 10(1): 20382, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230161

RESUMEN

Photobiomodulation (PBM) by far-red (FR) to near-infrared (NIR) light has been demonstrated to restore the function of damaged mitochondria, increase the production of cytoprotective factors and prevent cell death. Our laboratory has shown that FR PBM improves functional and structural outcomes in animal models of retinal injury and retinal degenerative disease. The current study tested the hypothesis that a brief course of NIR (830 nm) PBM would preserve mitochondrial metabolic state and attenuate photoreceptor loss in a model of retinitis pigmentosa, the P23H transgenic rat. P23H rat pups were treated with 830 nm light (180 s; 25 mW/cm2; 4.5 J/cm2) using a light-emitting diode array (Quantum Devices, Barneveld, WI) from postnatal day (p) 10 to p25. Sham-treated rats were restrained, but not treated with 830 nm light. Retinal metabolic state, function and morphology were assessed at p30 by measurement of mitochondrial redox (NADH/FAD) state by 3D optical cryo-imaging, electroretinography (ERG), spectral-domain optical coherence tomography (SD-OCT), and histomorphometry. PBM preserved retinal metabolic state, retinal function, and retinal morphology in PBM-treated animals compared to the sham-treated group. PBM protected against the disruption of the oxidation state of the mitochondrial respiratory chain observed in sham-treated animals. Scotopic ERG responses over a range of flash intensities were significantly greater in PBM-treated rats compared to sham controls. SD-OCT studies and histological assessment showed that PBM preserved the structural integrity of the retina. These findings demonstrate for the first time a direct effect of NIR PBM on retinal mitochondrial redox status in a well-established model of retinal disease. They show that chronic proteotoxic stress disrupts retinal bioenergetics resulting in mitochondrial dysfunction, and retinal degeneration and that therapies normalizing mitochondrial metabolism have considerable potential for the treatment of retinal degenerative disease.


Asunto(s)
Metabolismo Energético/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Mitocondrias/efectos de la radiación , Degeneración Retiniana/radioterapia , Retinitis Pigmentosa/radioterapia , Animales , Modelos Animales de Enfermedad , Electrorretinografía , Flavina-Adenina Dinucleótido/metabolismo , Rayos Infrarrojos , Mitocondrias/metabolismo , NAD/metabolismo , Oxidación-Reducción , Ratas , Ratas Transgénicas , Degeneración Retiniana/diagnóstico por imagen , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Células Fotorreceptoras Retinianas Bastones/efectos de la radiación , Retinitis Pigmentosa/diagnóstico por imagen , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Tomografía de Coherencia Óptica , Resultado del Tratamiento
9.
J Biophotonics ; 13(9): e202000089, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32436651

RESUMEN

Uninephrectomy (UNX) is known to result in structural and metabolic changes to the remaining kidney, although it is uncertain if this alters the mitochondrial redox state and how soon such changes may occur. A custom-designed fluorescence cryo-imaging technique was used to quantitatively assess the effect of UNX by measuring the levels of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) in the remaining kidney. Kidneys were snap-frozen 3 days following UNX, and the intrinsic fluorescence of NADH and FAD were optically acquired. The 3D images were created to characterize the NADH/FAD redox ratios (RR) of the right kidneys, which underwent UNX and the remaining kidneys 3 days following UNX. Both the NADPH-oxidases (Nox2 and Nox4) and the mitochondria are the main sources of reactive oxygen species (ROS) production in tubular epithelial cells. Responses to the UNX were obtained in kidneys of normal Sprague Dawley (SD) rats, Dahl salt-sensitive (SS) rats and SS rats in which NADPH-oxidase isoform 4 (Nox4) was knocked out (SSNox4-/- ). The results found that each of the strains exhibited similar increase in kidney weights averaging 17% after 3 days of UNX. SD and SSNox4-/- rats both exhibited global reductions of the RR (P < .05) with a similar tendency observed in SS rats (P < .08), indicating increased ROS production. The unexpected reduction of the RR in the remnant kidneys of SSNox4-/- rats indicates that mechanisms independent of H2 O2 produced from Nox4 may be responsible for this global increase of ROS. We propose that the reduced RR was largely a consequence of enhanced mitochondrial bioenergetics due to increased tubular workload of the remaining kidney. The data indicate that mitochondria become the dominant source of increased ROS following UNX and could represent an important hypertrophic signaling mechanism.


Asunto(s)
Riñón , Imagen Óptica , Animales , Riñón/diagnóstico por imagen , Riñón/cirugía , Oxidación-Reducción , Ratas , Ratas Endogámicas Dahl , Ratas Sprague-Dawley
10.
Ann Biomed Eng ; 47(7): 1564-1574, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30963380

RESUMEN

The kidney is one of the most radiosensitive organs; it is the primary dose-limiting organ in radiotherapies for upper abdominal cancers. The role of mitochondrial redox state in the development and treatment of renal radiation injury, however, remains ill-defined. This study utilizes 3D optical cryo-imaging to quantify renal mitochondrial bioenergetics dysfunction after 13 Gy leg-out partial body irradiation (PBI). Furthermore, the mitigating effects of lisinopril (lisino), an anti-hypertensive angiotensin converting enzyme inhibitor, is assessed in renal radiation-induced injuries. Around day 150 post-irradiation, kidneys are harvested for cryo-imaging. The 3D images of the metabolic indices (NADH, nicotinamide adenine dinucleotide, and FAD, flavin adenine dinucleotide) are acquired, and the mitochondrial redox states of the irradiated and irradiated + lisino kidneys are quantified by calculating the volumetric mean redox ratio (NADH/FAD). PBI oxidized renal mitochondrial redox state by 78%. The kidneys from the irradiated + lisino rats showed mitigation of mitochondrial redox state by 93% compared to the PBI group. The study provides evidence for an altered bioenergetics and energy metabolism in the rat model of irradiation-induced kidney damage. In addition, the results suggest that lisinopril mitigates irradiation damage by attenuating the oxidation of mitochondria leading to increase redox ratio.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Enfermedades Renales/tratamiento farmacológico , Riñón/efectos de la radiación , Lisinopril/uso terapéutico , Mitocondrias/efectos de la radiación , Traumatismos por Radiación/tratamiento farmacológico , Animales , Femenino , Flavina-Adenina Dinucleótido/metabolismo , Rayos gamma , Imagenología Tridimensional , Riñón/metabolismo , Enfermedades Renales/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Traumatismos por Radiación/metabolismo , Ratas
11.
IEEE J Transl Eng Health Med ; 7: 1800809, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32166047

RESUMEN

Background: Diabetes is known to cause delayed wound healing, and chronic non-healing lower extremity ulcers may end with lower limb amputations and mortalities. Given the increasing prevalence of diabetes mellitus worldwide, it is critical to focus on underlying mechanisms of these debilitating wounds to find novel therapeutic strategies and thereby improve patient outcome. Methods: This study aims to design a label-free optical fluorescence imager that captures metabolic indices (NADH and FAD autofluorescence) and monitors the in vivo wound healing progress noninvasively. Furthermore, 3D optical cryo-imaging of the mitochondrial redox state was utilized to assess the volumetric redox state of the wound tissue. Results: The results from our in vivo fluorescence imager and the 3D cryo-imager quantify the differences between the redox state of wounds on diabetic mice in comparison with the control mice. These metabolic changes are associated with mitochondrial dysfunction and higher oxidative stress in diabetic wounds. A significant correlation was observed between the redox state and the area of the wounds. Conclusion: The results suggest that our developed novel optical imaging system can successfully be used as an optical indicator of the complex wound healing process noninvasively.

12.
J Innov Opt Health Sci ; 11(6)2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30197684

RESUMEN

Postural orthostatic tachycardia syndrome (POTS) is a disabling condition characterized by orthostatic intolerance with tachycardia in the absence of drop-in blood pressure. A custom-built near-infrared spectroscopy device (NIRS) is applied to monitor the muscle oxygenation, noninvasively in patients undergoing incremental head-up tilt table (HUT). Subjects (6 POTS patients and 6 healthy controls) underwent 30 mins of 70°on a HUT. The results showed a significant difference in deoxyhemoglobin (Hb), change-in-oxygenation (ΔOxy) and blood volume (ΔBV) between patients and healthy controls. However, oxyhemoglobin (HbO2) showed a significantly faster rate of change in the healthy controls during the first 10 mins of the tilt and during the recovery. This NIRS muscle oximetry tool provides quantitative measurements of blood oxygenation monitoring in diseases such as POTS.

13.
PLoS One ; 13(8): e0201986, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30102730

RESUMEN

Tissues with high-energy demand including the heart are rich in the energy-producing organelles, mitochondria, and sensitive to mitochondrial dysfunction. While alterations in mitochondrial function are increasingly recognized in cardiovascular diseases, the molecular mechanisms through which changes in mitochondria lead to heart abnormalities have not been fully elucidated. Here, we report that transgenic mice overexpressing a novel regulator of mitochondrial dynamics, transmembrane protein 135 (Tmem135), exhibit increased fragmentation of mitochondria and disease phenotypes in the heart including collagen accumulation and hypertrophy. The gene expression analysis showed that genes associated with ER stress and unfolded protein response, and especially the pathway involving activating transcription factor 4, are upregulated in the heart of Tmem135 transgenic mice. It also showed that gene expression changes in the heart of Tmem135 transgenic mice significantly overlap with those of aged mice in addition to the similarity in cardiac phenotypes, suggesting that changes in mitochondrial dynamics may be involved in the development of heart abnormalities associated with aging. Our study revealed the pathological consequence of overexpression of Tmem135, and suggested downstream molecular changes that may underlie those disease pathologies.


Asunto(s)
Expresión Génica , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Miocardio/metabolismo , Animales , Biomarcadores , Biología Computacional/métodos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/mortalidad , Cardiopatías/patología , Inmunohistoquímica , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias Cardíacas/genética , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Análisis de Secuencia de ADN
14.
J Biophotonics ; 11(9): e201700289, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29577636

RESUMEN

Hyperglycemia affects retinal vascular cell function, promotes the development and progression of diabetic retinopathy and ultimately causes vision loss. Oxidative stress, reactive oxygen species (ROS) in excess, is a key biomarker for diabetic retinopathy. Using time-lapse fluorescence microscopy, ROS dynamics was monitored and the metabolic resistivity of retinal endothelial cells (REC) and pericytes (RPC) was compared under metabolic stress conditions including high glucose (HG). In the presence of a mitochondrial stressor, REC exhibited a significant increase in the rate of ROS production compared with RPC. Thus, under normal glucose (NG), REC may utilize oxidative metabolism as the bioenergetic source, while RPC metabolic activity is independent of mitochondrial respiration. In HG condition, the rate of ROS production in RPC was significantly higher, whereas this rate remained unchanged in REC. Thus, under HG condition RPC may preferentially utilize oxidative metabolism, which results in increased rate of ROS production. In contrast, REC use glycolysis as their major bioenergetic source for ATP production, and consequently HG minimally affects their ROS levels. These observations are consistent with our previous studies where we showed HG condition has minimal effect on apoptosis of REC, but results in increased rate of apoptosis in RPC. Collectively, our results suggest that REC and RPC exhibit different metabolic activity preferences under different glucose conditions. Thus, protection of RPC from oxidative stress may provide an early point of intervention in development and progression of diabetic retinopathy.


Asunto(s)
Glucosa/farmacología , Microscopía , Estrés Oxidativo/efectos de los fármacos , Pericitos/efectos de los fármacos , Pericitos/metabolismo , Retina/citología , Animales , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ratones , Ratones Endogámicos C57BL , Pericitos/citología , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo
15.
J Biomed Opt ; 23(1): 1-9, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29352564

RESUMEN

Whole thoracic irradiation (WTI) is known to cause deterioration in cardiac function. Whether irradiation predisposes the heart to further ischemia and reperfusion (IR) injury is not well known. The aim of this study is to examine the susceptibility of rat hearts to IR injury following a single fraction of 15 Gy WTI and to investigate the role of mitochondrial metabolism in the differential susceptibility to IR injury. After day 35 of irradiation, ex vivo hearts from irradiated and nonirradiated rats (controls) were exposed to 25-min global ischemia followed by 60-min IR, or hearts were perfused without IR for the same protocol duration [time controls (TC)]. Online fluorometry of metabolic indices [redox state: reduced nicotinamide adenine dinucleotide (NADH), oxidized flavin adenine dinucleotide (FAD), and NADH/FAD redox ratio] and functional variables [systolic left ventricular pressure (LVP), diastolic LVP (diaLVP), coronary flow (CF), and heart rate were recorded in the beating heart; developed LVP (dLVP) and rate pressure product (RPP)] were derived. At the end of each experimental protocol, hearts were immediately snap frozen in liquid N2 for later three-dimensional imaging of the mitochondrial redox state using optical cryoimaging. Irradiation caused a delay in recovery of dLVP and RPP after IR when compared to nonirradiated hearts but recovered to the same level at the end of reperfusion. CF in the irradiated hearts recovered better than the control hearts after IR injury. Both fluorometry and 3-D cryoimaging showed that in WTI and control hearts, the redox ratio increased during ischemia (reduced) and decreased on reperfusion (oxidized) when compared to their respective TCs; however, there was no significant difference in the redox state between WTI and controls. In conclusion, our results show that although irradiation of rat hearts compromised baseline cardiovascular function, it did not alter cardiac mitochondrial redox state and induce greater susceptibility of these hearts to IR injury.


Asunto(s)
Corazón/diagnóstico por imagen , Miocardio/metabolismo , Imagen Óptica/métodos , Daño por Reperfusión , Animales , Femenino , Flavina-Adenina Dinucleótido/metabolismo , Imagenología Tridimensional , NAD/metabolismo , Oxidación-Reducción , Ratas , Ratas Wistar , Daño por Reperfusión/diagnóstico por imagen , Daño por Reperfusión/metabolismo
16.
Biomed Opt Express ; 8(10): 4419-4426, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29082074

RESUMEN

Deterioration in mitochondrial function leads to hepatic ischemia and reperfusion injury (IRI) in liver surgery and transplantation. 3D optical cryoimaging was used to measure the levels of mitochondrial coenzymes NADH and FAD, and their redox ratio (NADH/FAD) gave a quantitative marker for hepatocyte oxidative stress during IRI. Using a rat model, five groups were compared: control, ischemia for 60 or 90 minutes (Isc60, Isc90), ischemia for 60 or 90 minutes followed by reperfusion of 24 hours (IRI60, IRI90). Ischemia alone did not cause a significant increase in the redox ratio; however, the redox ratio in both IRI60 and IRI90 groups was significantly decreased by 29% and 71%, respectively. A significant correlation was observed between the redox ratio and other markers of injury such as serum aminotransferase levels and the tissue ATP level. The mitochondrial redox state can be successfully measured using optical cryoimaging as a quantitative marker of hepatic IR injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...