Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 25(4): 66, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519779

RESUMEN

Oral submucous fibrosis (OSF) is a chronic progressive disease associated with increased collagen deposition and TGF-ß1 release. The current therapy and management have been a limited success due to low efficacy and adverse drug reactions. This study aimed to evaluate epigallocatechin 3-gallate (EGCG) encapsulated nanoparticles loaded mucoadhesive hydrogel nanocomposite (HNC) for OSF. Developed HNC formulations were evaluated for their permeation behaviour using in vitro as well as ex vivo studies, followed by evaluation of efficacy and safety by in vivo studies using areca nut extract-induced OSF in rats. The disease condition in OSF-induced rats was assessed by mouth-opening and biochemical markers. The optimized polymeric nanoparticles exhibited the required particle size (162.93 ± 13.81 nm), positive zeta potential (22.50 ± 2.94 mV) with better mucoadhesive strength (0.40 ± 0.002 N), and faster permeation due to interactions of the positively charged surface with the negatively charged buccal mucosal membrane. HNC significantly improved disease conditions by reducing TGF-ß1 and collagen concentration without showing toxicity and reverting the fibroid buccal mucosa to normal. Hence, the optimized formulation can be further tested to develop a clinically alternate therapeutic strategy for OSF.


Asunto(s)
Catequina/análogos & derivados , Fibrosis de la Submucosa Bucal , Ratas , Animales , Fibrosis de la Submucosa Bucal/tratamiento farmacológico , Fibrosis de la Submucosa Bucal/inducido químicamente , Factor de Crecimiento Transformador beta1/efectos adversos , Hidrogeles , Mucosa Bucal , Colágeno
2.
3 Biotech ; 13(12): 385, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37928438

RESUMEN

The aim of our study was to investigate the potential of rutin, catechin, dehydrozingerone, naringenin, and quercetin, both alone and in combination with temozolomide, to inhibit the expression of O6-methylguanine-DNA methyltransferase (MGMT) in glioma cells. MGMT has been shown to be a major cause of temozolomide resistance in glioma. Our study used both in silico and in vitro methods to assess the inhibitory activity of these phytochemicals on MGMT, with the goal of identifying the most effective combination of compounds for reducing temozolomide resistance. After conducting an initial in silico screening of natural compounds against MGMT protein, five phytochemicals were chosen based on their high docking scores and favorable binding energies. From the molecular docking and simulation studies, we found that quercetin showed a good inhibitory effect of MGMT with its high binding affinity. C6 glioma cells showed increased cytotoxicity when treated with the temozolomide and quercetin combination. It was understood from the isobologram and combination index plot that the drug combination showed a synergistic effect at the lowest dose. Quercetin when combined with temozolomide significantly decreased the MGMT levels in C6 cells in comparison with the other drugs as estimated by ELISA. The percentage of apoptotic cells increased significantly in the temozolomide-quercetin group indicating the potency of quercetin in decreasing the resistance of temozolomide as confirmed by acridine orange/ethidium bromide staining. Our experiment hence suggests that temozolomide resistance can be reduced by combining the drug with quercetin which will serve as an effective therapeutic target for glioblastoma treatment. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03821-7.

3.
AAPS PharmSciTech ; 24(6): 164, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37552343

RESUMEN

Ibrutinib (IBR) is a biopharmaceutical classification system (BCS) class II drug and an irreversible Bruton's tyrosine kinase (BTK) inhibitor. IBR has an extremely low oral bioavailability due to the activity of the CYP3A4 enzyme. The current intention of the research was to enhance solubility followed by oral bioavailability of IBR using the hot melt extrusion (HME) technique by formulating drug-drug cocrystals (DDCs). Ketoconazole (KET) is an active CYP3A4 inhibitor and was selected based on computational studies and solubility parameter prediction. Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), proton nuclear magnetic resonance (1H NMR), and scanning electron microscopy (SEM) evaluations were employed for estimating the formation of IBR-KET DDCs. The IBR-KET DDC system was discovered to have a hydrogen bond (H-bond) and π-π-stacking interactions, in accordance with the computational results. Further, IBR-KET DDCs showed enhanced solubility, stability, powder dissolution, in vitro release, and flow properties. Furthermore, IBR-KET-DDCs were associated with enhanced cytotoxic activity in K562-CCL-243 cancer cell lines when compared with IBR and KET alone. In vivo pharmacokinetic studies have shown an enhanced oral bioavailability of up to 4.30 folds of IBR and 2.31 folds of KET through IBR-KET-DDCs compared to that of the IBR and KET suspension alone. Thus, the prepared IBR-KET-DDCs using the HME technique stand as a favorable drug delivery system that augments the solubility and oral bioavailability of IBR along with KET.


Asunto(s)
Cetoconazol , Solubilidad , Disponibilidad Biológica , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Polvos , Difracción de Rayos X , Rastreo Diferencial de Calorimetría
4.
Mol Divers ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37394684

RESUMEN

The Akt pathway plays a significant role in various diseases like Alzheimer's, Parkinson's, and Diabetes. Akt is the central protein whose phosphorylation controls many downstream pathways. Binding of small molecules to the PH domain of Akt facilitates its phosphorylation in the cytoplasm and upregulates the Akt pathway. In the current study, to identify Akt activators, ligand-based approaches like 2D QSAR, shape, and pharmacophore-based screening were used, followed by structure-based approaches such as docking, MM-GBSA, ADME prediction, and MD simulation. The top twenty-five molecules from the Asinex gold platinum database found to be active in most 2D QSAR models were used for shape and pharmacophore-based screening. Later docking was performed using the PH domain of Akt1 (PDB: 1UNQ), and 197105, 261126, 253878, 256085, and 123435 were selected based on docking score and interaction with key residues, which were druggable and formed a stable protein-ligand complex. MD simulations of 261126 and 123435 showed better stability and interactions with key residues. To further investigate the SAR of 261126 and 123435, derivatives were downloaded from PubChem, and structure-based approaches were employed. MD simulation of derivatives 12289533, 12785801, 83824832, 102479045, and 6972939 was performed, in which 83824832 and 12289533 showed interaction with key residues for a longer duration of time, proving that they may act as Akt activators.

5.
Sci Rep ; 13(1): 7947, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193898

RESUMEN

Non-small cell lung carcinomas (NSCLC) are the predominant form of lung malignancy and the reason for the highest number of cancer-related deaths. Widespread deregulation of Akt, a serine/threonine kinase, has been reported in NSCLC. Allosteric Akt inhibitors bind in the space separating the Pleckstrin homology (PH) and catalytic domains, typically with tryptophan residue (Trp-80). This could decrease the regulatory site phosphorylation by stabilizing the PH-in conformation. Hence, in this study, a computational investigation was undertaken to identify allosteric Akt-1 inhibitors from FDA-approved drugs. The molecules were docked at standard precision (SP) and extra-precision (XP), followed by Prime molecular mechanics-generalized Born surface area (MM-GBSA), and molecular dynamics (MD) simulations on selected hits. Post XP-docking, fourteen best hits were identified from a library of 2115 optimized FDA-approved compounds, demonstrating several beneficial interactions such as pi-pi stacking, pi-cation, direct, and water-bridged hydrogen bonds with the crucial residues (Trp-80 and Tyr-272) and several amino acid residues in the allosteric ligand-binding pocket of Akt-1. Subsequent MD simulations to verify the stability of chosen drugs to the Akt-1 allosteric site showed valganciclovir, dasatinib, indacaterol, and novobiocin to have high stability. Further, predictions for possible biological interactions were performed using computational tools such as ProTox-II, CLC-Pred, and PASSOnline. The shortlisted drugs open a new class of allosteric Akt-1 inhibitors for the therapy of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reposicionamiento de Medicamentos , Simulación del Acoplamiento Molecular , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Simulación de Dinámica Molecular
6.
Inflammopharmacology ; 31(5): 2349-2368, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37106237

RESUMEN

Oral submucous fibrosis (OSF) is a chronic, progressive, and precancerous condition mainly caused by chewing areca nut. Currently, OSF therapy includes intralesional injection of corticosteroids with limited therapeutic success in disease management. Therefore, a combined approach of in silico, in vitro and in vivo drug development can be helpful. Polyphenols are relatively safer than other synthetic counterparts. We used selected polyphenols to shortlist the most suitable compound by in silico tools. Based on the in silico results, epigallocatechin-3-gallate (EGCG), quercetin (QUR), resveratrol, and curcumin had higher affinity and stability with the selected protein targets, transforming growth factor beta-1 (TGF-ß1), and lysyl oxidase (LOX). The efficacy of selected polyphenols was studied in primary buccal mucosal fibroblasts followed by in vivo areca nut extract induced rat OSF model. In in vitro studies, the induced fibroblast cells were treated with EGCG and QUR. EGCG was safer at higher concentrations and more efficient in reducing TGF-ß1, collagen type-1A2 and type-3A1 mRNA expression than QUR. In vivo studies confirmed that the EGCG hydrogel was efficient in improving the disease conditions compared to the standard treatment betamethasone injection with significant reduction in TGF-ß1 and collagen concentrations with increase in mouth opening. EGCG can be considered as a potential, safer and efficient phytomolecule for OSF therapy and its mucoadhesive topical formulation help in the improvement of patient compliance without any side effects. Highlights Potential polyphenols were shortlisted to treat oral submucous fibrosis (OSF) using in silico tools Epigallocatechin 3-gallate (EGCG) significantly reduced TGF-ß1 and collagen both in vitro and in vivo EGCG hydrogel enhanced antioxidant defense, modulated inflammation by reducing TGF-ß1 and improved mouth opening in OSF rat model.


Asunto(s)
Fibrosis de la Submucosa Bucal , Humanos , Animales , Ratas , Fibrosis de la Submucosa Bucal/tratamiento farmacológico , Fibrosis de la Submucosa Bucal/inducido químicamente , Fibrosis de la Submucosa Bucal/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Polifenoles/farmacología , Colágeno , Hidrogeles/efectos adversos
7.
J Biomol Struct Dyn ; 41(21): 11930-11945, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37042962

RESUMEN

Tribulus terrestris L. (Gokshura) is a medicinal herb used for treating cardiac diseases and several other diseases. However, the active ingredients and the possible mechanism of action for treating cardiac diseases remain unclear. Hence, the study was designed to identify the active ingredients and to explore the potential mechanism of action of Tribulus terrestris L. for treating cardiac diseases by an integrated approach of metabolomics and network pharmacology. We performed HPLC-QTOF-MS/MS analysis to identify putative compounds and network pharmacology approach for predictive key targets and pathways. Using molecular docking and molecular dynamics simulation, we identified the active ingredients in Tribulus terrestris L. that can act as putative lead compounds to treat cardiac diseases. A total of 55 putative compounds were identified using methanolic extract of Tribulus terrestris L. using HPLC-QTOF-MS/MS analysis. Network pharmacology analysis predicted 32 human protein targets from 25 secondary metabolites, which have shown direct interaction with cardiac diseases. Based on the degrees of interaction, the hub targets such as TACR1, F2, F2R, ADRA1B, CHRM5, ADRA1A, ADRA1D, HTR2B, and AVPR1A were identified. In silico molecular docking and simulation resulted in the identification of active ingredients such as Kaempferol 3-rutinoside 7-glucuronide, Keioside, rutin, moupinamide, aurantiamide, quercetin-3-o-α-rhamnoside, tribuloside, and 3'',6''- Di-O-p-coumaroyltrifolin against hub protein targets. Hence, these compounds could be potential lead compounds for treating cardiac diseases. A further assessment of its efficacy can be made based on in vivo and in vitro studies for better understanding and strong assertion.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Medicamentos Herbarios Chinos , Cardiopatías , Tribulus , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Simulación del Acoplamiento Molecular , Farmacología en Red
8.
Viruses ; 15(1)2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36680253

RESUMEN

The coronavirus disease (COVID-19) is a pandemic that started in the City of Wuhan, Hubei Province, China, caused by the spread of coronavirus (SARS-CoV-2). Drug discovery teams around the globe are in a race to develop a medicine for its management. It takes time for a novel molecule to enter the market, and the ideal way is to exploit the already approved drugs and repurpose them therapeutically. We have attempted to screen selected molecules with an affinity towards multiple protein targets in COVID-19 using the Schrödinger suit for in silico predictions. The proteins selected were angiotensin-converting enzyme-2 (ACE2), main protease (MPro), and spike protein. The molecular docking, prime MM-GBSA, induced-fit docking (IFD), and molecular dynamics (MD) simulations were used to identify the most suitable molecule that forms a stable interaction with the selected viral proteins. The ligand-binding stability for the proteins PDB-IDs 1ZV8 (spike protein), 5R82 (Mpro), and 6M1D (ACE2), was in the order of nintedanib > quercetin, nintedanib > darunavir, nintedanib > baricitinib, respectively. The MM-GBSA, IFD, and MD simulation studies imply that the drug nintedanib has the highest binding stability among the shortlisted. Nintedanib, primarily used for idiopathic pulmonary fibrosis, can be considered for repurposing for us against COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Simulación del Acoplamiento Molecular , Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tratamiento Farmacológico de COVID-19 , Simulación de Dinámica Molecular , Antivirales/uso terapéutico , Antivirales/química , Reposicionamiento de Medicamentos
9.
Mol Divers ; 27(5): 2015-2036, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36244040

RESUMEN

Breast cancer is a common form of cancer that affects both men and women. One of the most common types of genomic flaws in cancer is the aberrations in the PI3K/AKT/mTOR pathway. The benefit of dual targeting PI3K as well as mTOR is that the kinase-positive feedback loops are more effectively inhibited. Therefore, in the current study, structure-based models like molecular docking, MM-GBSA, Qikprop, induced fit docking, simulated molecular dynamics (MD), and thermal MM-GBSA were used to identify the phytochemicals from the zinc 15 database, which may inhibit PI3K and mTOR. After docking the phytochemicals with PI3K (PDB 4FA6), ten ligands based on the docking score were selected, among which salvianolic acid C had the highest docking score. Hence, salvianolic acid A was also docked. All the ligands taken showed a binding energy of greater than - 30 kcal/mol. The predicted ADME showed that the ligands have druggable properties. By performing MD of the top five ligands and salvianolic acid A, it was found that ZINC000059728582, ZINC000257545754, ZINC000253532301, and salvianolic acid A form a stable complex with PI3K protein, among which ZINC000014690026 showed interaction with Val 882 for more than 89% of the time. Salvianolic acid A is already proven to suppress tumor growth in acute myeloid leukemia by inhibiting PI3K/AKT pathway, but the exact protein target is unknown. Therefore, the present study identifies new molecules and provides evidence for salvianolic acid A for dual inhibition. Further experiments must be performed both in vitro and in vivo to support the predictions of these computational tools.


Asunto(s)
Neoplasias de la Mama , Fosfatidilinositol 3-Quinasas , Femenino , Humanos , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Ligandos , Serina-Treonina Quinasas TOR , Neoplasias de la Mama/metabolismo , Fitoquímicos/farmacología
10.
AAPS PharmSciTech ; 23(8): 284, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253571

RESUMEN

The present research aims to investigate the miscibility, physical stability, solubility, and dissolution rate of a poorly water-soluble glibenclamide (GLB) in solid dispersions (SDs) with hydrophilic carriers like PEG-1500 and PEG-50 hydrogenated palm glycerides (Acconon). Mathematical theories such as Hansen solubility parameters, Flory Huggins theory, Gibbs free energy, and the in silico molecular dynamics simulation study approaches were used to predict the drug-carrier miscibility. To increase the solubility further, the effervescence technique was introduced to the conventional solid dispersions to prepare effervescent solid dispersions (ESD). Solid dispersions (SDs) were prepared by microwave, solvent evaporation, lyophilization, and hot melt extrusion (HME) techniques and tested for different characterization parameters. The theoretical and in silico parameters suggested that GLB would show good miscibility with the selected carriers under certain conditions. Intermolecular hydrogen bonding between the drug and carrier(s) was confirmed by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. Solid-state characterizations like powder X-ray diffraction, differential scanning calorimetry, and microscopy confirm the amorphous nature of SDs. The addition of the effervescent agent improved the amorphous nature, due to which the solubility and drug release rate was increased. In vitro and ex vivo intestinal absorption studies showed improved flux and permeability than the pure drug, suggesting an enhanced drug delivery. The GLB solubility, dissolution, and stability were greatly enhanced by the SD and ESD technology.


Asunto(s)
Portadores de Fármacos , Gliburida , Rastreo Diferencial de Calorimetría , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Excipientes , Glicéridos , Polvos , Protones , Solubilidad , Solventes , Espectroscopía Infrarroja por Transformada de Fourier , Agua , Difracción de Rayos X
11.
Dent J (Basel) ; 10(5)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35621529

RESUMEN

Excessive bleeding can complicate surgical intervention; this could be managed using an effective hemostatic agent that provides immediate and early bleeding control. Gelatin sponge and Calendula officinalis have been proven to have good hemostatic properties. The present In-vitro study analyzed the cytotoxicity and hemostatic properties of gelatin sponge and Calendula officinalis. The cytotoxic concentration/effective concentration of Calendula officinalis was determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The drug release was determined using a vertical Franz diffusion cell apparatus; solid-state characterization was assessed using Fourier-transform infrared spectroscopy (FTIR) and a differential scanning calorimeter (DSC). The MTT assay showed 7% Calendula officinalis to be cytocompatible, and there was an increase in cell proliferation. When the 7% Calendula officinalis was loaded into the sponge, it was compatible, and the drug content was found to be 56.28 ± 13.84%. The time taken for the blood clot formation was measured using the Lee-White method. The gelatin sponge's time for clot formation was 161.70 ± 3.11 s, and the Calendula officinalis loaded gelatin sponge's time for clot formation was 158.75 ± 4.60 s. Hence, it could be concluded that when Calendula officinalis is incorporated into a gelatin sponge, it shows material compatibility and cytocompatibility, reduces the time for clot formation, and could be used as an alternative to other hemostatic agents.

12.
Life Sci ; 291: 120283, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34998839

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with unknown etiological factors that can progress to other dangerous diseases like lung cancer. Environmental and genetic predisposition are the two major etiological or risk factors involved in the pathology of the IPF. Among the environmental risk factors, smoking is one of the major causes for the development of IPF. Epigenetic pathways like nucleosomes remodeling, DNA methylation, histone modifications and miRNA mediated genes play a crucial role in development of IPF. Mutations in the genes make the epigenetic factors as important drug targets in IPF. Transcriptional changes due to environmental factors are also involved in the progression of IPF. The mutations in human telomerase reverse transcriptase (hTERT) have shown decreased life expectancy in IPF patients. The TERT-gene is highly expressed in chronic smokers and makes the role of epigenetics evident. Drug like nintedanib acts through vascular endothelial growth factor receptors (VEGFR), while drug pirfenidone acts through transforming growth factor (TGF), which is useful in IPF. Gefitinib, a tyrosine kinase inhibitor of EGFR, is useful as an anti-fibrosis agent in preclinical models. Newer drugs such as Celgene-CC90001 and FibroGen-FG-3019 are currently under investigations acts through the modulating epigenetic mechanisms. Thus, the study on epigenetics opens a wide window for the discovery of newer drugs. This study provides an elementary analysis of multiple regulators of epigenetics and their roles associated with the pathology of IPF. Further, this review also includes epigenetic drugs under development in preclinical and clinical stages.


Asunto(s)
Epigénesis Genética/genética , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/genética , Metilación de ADN/genética , Metilación de ADN/fisiología , Epigenómica/métodos , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/genética
13.
Int J Pharm ; 608: 121119, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34560205

RESUMEN

The present study was designed to investigate the contribution of solid-state and the impact of composite drug-rich phase generated as a consequence of pH shift on the maximum achievable supersaturation of co-amorphous formulations. The co-amorphous phases of weak base-weak base-pair i.e. Ritonavir and Darunavir were prepared in anticipation of studying the effect of drug-rich phase consequent to pH shift. While the co-amorphous phases of weak base-Weak acid pair i.e. Darunavir and Indomethacin were studied to understand the manifestation of the solid-state drug: co-former miscibility in the absence of drug rich phase. Thermodynamically, the lowering of the supersaturation was found commensurate with the mole fraction of the respective component (Drug/Co-former) within the co-amorphous materials for both Darunavir: Ritonavir and Darunavir: Indomethacin pair. Kinetically, for Darunavir: Ritonavir co-amorphous materials, the shift in the pH from acidic to the neutral side led to the generation of drug-rich phase and subsequent LLPS. The free drug concentration achieved in the bulk of the solution was found dependent upon the mole fraction of the respective component within the drug-rich phase. The relative mole fraction of each component within the composite drug-rich phase is dictated by pH-dependent solubility and molecular weight of the individual components.


Asunto(s)
Preparaciones Farmacéuticas , Ritonavir , Darunavir , Indometacina , Solubilidad
14.
Int J Mol Sci ; 22(16)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34445763

RESUMEN

Unfortunately, COVID-19 is still a threat to humankind and has a dramatic impact on human health, social life, the world economy, and food security. With the limited number of suggested therapies under clinical trials, the discovery of novel therapeutic agents is essential. Here, a previously identified anti-SARS-CoV-2 compound named Compound 13 (1,2,5-Oxadiazole-3-carboximidic acid, 4,4'-(methylenediimino) bis,bis[[(2-hydroxyphenyl)methylene]hydrazide) was subjected to an iterated virtual screening against SARS-CoV-2 Mpro using a combination of Ligand Designer and PathFinder. PathFinder, a computational reaction enumeration tool, was used for the rapid generation of enumerated structures via default reaction library. Ligand designer was employed for the computerized lead optimization and selection of the best structural modification that resulted in a favorable ligand-protein complex. The obtained compounds that showed the best binding to Mpro were re-screened against TMPRSS2, leading to the identification of 20 shared compounds. The compounds were further visually inspected, which resulted in the identification of five shared compounds M1-5 with dual binding affinity. In vitro evaluation and enzyme inhibition assay indicated that M3, an analogue of Compound 13 afforded by replacing the phenolic moiety with pyridinyl, possesses an improved antiviral activity and safety. M3 displayed in vitro antiviral activity with IC50 0.016 µM and Mpro inhibition activity with IC50 0.013 µM, 7-fold more potent than the parent Compound 13 and potent than the antivirals drugs that are currently under clinical trials. Moreover, M3 showed potent activity against human TMPRSS2 and furin enzymes with IC50 0.05, and 0.08 µM, respectively. Molecular docking, WaterMap analysis, molecular dynamics simulation, and R-group analysis confirmed the superiority of the binding fit to M3 with the target enzymes. WaterMap analysis calculated the thermodynamic properties of the hydration site in the binding pocket that significantly affects the biological activity. Loading M3 on zinc oxide nanoparticles (ZnO NPs) increased the antiviral activity of the compound 1.5-fold, while maintaining a higher safety profile. In conclusion, lead optimized discovery following an iterated virtual screening in association with molecular docking and biological evaluation revealed a novel compound named M3 with promising dual activity against SARS-CoV-2. The compound deserves further investigation for potential clinical-based studies.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Descubrimiento de Drogas/métodos , Inhibidores de Proteasas/farmacología , Antivirales/uso terapéutico , COVID-19/virología , Proteasas 3C de Coronavirus/metabolismo , Pruebas de Enzimas , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/uso terapéutico , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Serina Endopeptidasas/metabolismo
15.
Carbohydr Polym ; 261: 117893, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33766378

RESUMEN

Glycosylated pH-sensitive mesoporous silica nanoparticles (MSNs) of capecitabine (CAP) were developed for targeting colorectal cancer. The MSNs possessed an average pore diameter of 8.12 ± 0.43 nm, pore volume of 0.73 ± 0.21 cm3/g, and particle size of 245.24 ± 5.75 nm. A high loading of 180.51 ± 5.23 mg/g attributed to the larger pore volume was observed. The surface of the drug-loaded MSNs were capped with chitosan-glucuronic acid (CHS-GCA) conjugate to combine two strategies viz. pH-sensitive, and lectin receptor mediated uptake. In vitro studies demonstrated a pH-sensitive and controlled release of CAP which was further enhanced in the presence of rat caecal content. Higher uptake of the (CAP-MSN)CHS-GCA was observed in HCT 116 cell lines. The glycosylated nanoparticles revealed reduction in the tumors, aberrant crypt foci, dysplasia and inflammation, and alleviation in the toxic features. This illustrated that the nanoparticles showed promising antitumor efficacy with reduced toxicity and may be used as a effective carrier against cancer.


Asunto(s)
Capecitabina/administración & dosificación , Quitosano/química , Neoplasias Colorrectales/tratamiento farmacológico , Portadores de Fármacos/síntesis química , Ácido Glucurónico/química , Dióxido de Silicio/química , Animales , Capecitabina/farmacocinética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/uso terapéutico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Preparaciones de Acción Retardada/síntesis química , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/uso terapéutico , Portadores de Fármacos/química , Portadores de Fármacos/uso terapéutico , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Femenino , Células HCT116 , Humanos , Concentración de Iones de Hidrógeno , Nanopartículas/química , Nanopartículas/uso terapéutico , Tamaño de la Partícula , Porosidad , Ratas , Ratas Wistar , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Drug Discov Today ; 24(3): 781-788, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30502513

RESUMEN

Formulation design is an important phase in the drug development process. However, this process at an experimental level requires exhaustive experimental work. Excipient selection, prediction of solubility, encapsulation efficiency, release patterns, drug absorption, stability, and mechanism of nanoparticle formation are some of the essential steps in formulation design. The use of various computational tools, including quantitative structure-activity relationships (QSARs), molecular modeling, molecular mechanics, discrete element modeling, finite element method, computational fluid dynamics, and physiologically based pharmacokinetics (PBPK) modeling, help in the identification of drug product inadequacies and to recommend avenues for understanding complex formulation design in less time with lower investment. Here, we focus on computational modeling tools used in formulation design and its applications.


Asunto(s)
Composición de Medicamentos , Diseño de Fármacos , Modelos Teóricos , Animales , Geles , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...