Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Braz. J. Pharm. Sci. (Online) ; 59: e211035, 2023. graf
Artículo en Inglés | LILACS | ID: biblio-1505835

RESUMEN

Abstract Compound Danshen Dripping Pills (CDDPs) have been used in clinical treatment to protect the heart from ischemia/reperfusion (IR) injury for many years. However, the underlying mechanism implicated in the protective effects remains to be explored. Here, we determined the effects of CDDPs in Sprague-Dawley rats with the IR model. Cardiac function in vivo was assessed by echocardiography. Transmission electron microscopy, histological and immunohistochemical techniques, Western blotting and recombinant adeno-associated virus 9 transfection were used to illustrate the effects of CDDPs on IR and autophagy. Our results showed that pretreatment with CDDPs decreased the level of serum myocardial enzymes and infarct size in rats after IR. Apoptosis evaluation showed that CDDPs significantly ameliorated the cardiac apoptosis level after IR. Meanwhile, CDDPs pretreatment increased myocardial autophagic flux, with upregulation of LC3B, downregulation of p62, and increased autophagosomes and autolysosomes. Moreover, the autophagic flux inhibitor chloroquine could increase IR injury, while CDDPs could partially reverse the effects. Furthermore, our results showed that the activation of AMPK/mTOR was involved in the cardioprotective effect exerted by CDDPs. Herein, we suggest that CDDPs partially protect the heart from IR injury by enhancing autophagic flux through the activation of AMPK/mTOR.


Asunto(s)
Animales , Masculino , Ratas , Reperfusión/clasificación , Daño por Reperfusión/clasificación , Western Blotting/instrumentación , Corazón/fisiopatología , Isquemia/clasificación , Ecocardiografía/métodos , Microscopía Electrónica de Transmisión/métodos , Infarto/patología
2.
Free Radic Biol Med ; 189: 122-135, 2022 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-35843476

RESUMEN

INTRODUCTION: Ferroptosis, a newly identified type of programmed cell death type, has been proven to contribute to the progression of myocardial ischemia/reperfusion (I/R) injury. However, little is known about ferroptosis regulation in I/R injury. OBJECTIVES: We identified activating transcription factor 3 (ATF3) as a vital regulator of I/R induced ferroptosis and investigated the effects and potential mechanism of ATF3 in cardiac ferroptosis. METHODS: In this study, the dynamic RNA-sequencing (RNA-seq) analysis were performed on mouse hearts exposed to different I/R schedules to identify that ATF3 represents an important modulatory molecule in myocardial I/R injury. Then knockout, rescue and overexpression methods were used in mice and neonatal mouse cells (NMCs) to illustrate the effect of ATF3 on myocardial I/R injury. Loss/gain of function techniques were used both in vivo and in vitro to explore the effects of ATF3 on ferroptosis in I/R injury. Furthermore, chromatin immunoprecipitation sequence (ChIP-seq) analysis was performed in the AC16 human cardiomyocyte cell line to investigate potential genes regulated by ATF3. RESULTS: ATF3 expression reached highest level at early stage of reperfusion, knockout of ATF3 significantly aggravated I/R injury, which could be rescued by ATF3 re-expression. Knockout and the re-expression of ATF3 changed the transcription levels of multiple ferroptosis genes. In addition, results showed that overexpression of ATF3 inhibits cardiomyocyte ferroptosis triggered by erastin and RSL3. Lastly, ChIP-seq and dual luciferase activity analysis revealed ATF3 could bind to the transcription start site of Fanconi anaemia complementation group D2 (FANCD2) and increased the FANCD2 promoter activity. Furthermore, we first demonstrated that overexpression of FANCD2 exerts significant anti-ferroptosis and cardioprotective effect on AC16 cell H/R injury. CONCLUSION: ATF3 inhibits cardiomyocyte ferroptotic death in I/R injury, which might be related with regulating FANCD2. Our study provides new insight into the molecular target for the therapy of myocardial I/R injury.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Daño por Reperfusión Miocárdica , Daño por Reperfusión , Factor de Transcripción Activador 3/genética , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Humanos , Isquemia , Ratones , Ratones Noqueados , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Reperfusión , Daño por Reperfusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA