Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem C Nanomater Interfaces ; 127(39): 19591-19598, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37817917

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy is a key method for the determination of molecular structures. Due to its intrinsically high (i.e., atomistic) resolution and versatility, it has found numerous applications for investigating gases, liquids, and solids. However, liquid-state NMR has found little application for suspensions of solid particles as the resonances of such systems are excessively broadened, typically beyond the detection threshold. Herein, we propose a route to overcoming this critical limitation by enhancing the signals of particle suspensions by >3.000-fold using dissolution dynamic nuclear polarization (d-DNP) coupled with rapid solid precipitation. For the proof-of-concept series of experiments, we employed calcium phosphate (CaP) as a model system. By d-DNP, we boosted the signals of phosphate 31P spins before rapid CaP precipitation inside the NMR spectrometer, leading to the inclusion of the hyperpolarized phosphate into CaP-nucleated solid particles within milliseconds. With our approach, within only 1 s of acquisition time, we obtained spectra of biphasic systems, i.e., micrometer-sized dilute solid CaP particles coexisting with their solution-state precursors. Thus, this work is a step toward real-time characterization of the solid-solution equilibrium. Finally, integrating the hyperpolarized data with molecular dynamics simulations and electron microscopy enabled us to shed light on the CaP formation mechanism in atomistic detail.

2.
Phys Chem Chem Phys ; 24(46): 28242-28249, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36382502

RESUMEN

Radicals serve as a source of polarization in dynamic nuclear polarization, but may also act as polarization sink, in particular at low field. Additionally, if the couplings between the electron spins and different nuclear reservoirs are stronger than any of the reservoirs' couplings to the lattice, radicals can mediate hetero-nuclear polarization transfer. Here, we report radical-enhanced 13C relaxation in pyruvic acid doped with trityl. Up to 40 K, we find a linear carbon T1 field dependence between 5 mT and 2 T. We model the dependence quantitatively, and find that the presence of trityl accelerates direct hetero-nuclear polarization transfer at low fields, while at higher fields 13C relaxation is diffusion limited. Measurements of hetero-nuclear polarization transfer up to 600 mT confirm the predicted radical-mediated proton-carbon mixing.

3.
J Phys Chem Lett ; 13(44): 10370-10376, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36316011

RESUMEN

In dynamic nuclear polarization (DNP), radicals such as trityl provide a source for high nuclear spin polarization. Conversely, during the low-field transfer of hyperpolarized solids, the radicals' dipolar or Non-Zeeman reservoir may act as a powerful nuclear polarization sink. Here, we report the low-temperature proton spin relaxation in pyruvic acid doped with trityl, for fields from 5 mT to 2 T. We estimate the heat capacity of the radical Non-Zeeman reservoir experimentally and show that a recent formalism by Wenckebach yields a parameter-free, yet quantitative model for the entire field range.


Asunto(s)
Protones , Ácido Pirúvico , Compuestos de Sulfhidrilo
4.
Magn Reson (Gott) ; 2(2): 815-825, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37905208

RESUMEN

In dissolution-dynamic nuclear polarization, a hyperpolarized solid is dissolved with a jet of hot solvent. The solution is then transferred to a secondary magnet, where spectra can be recorded with improved sensitivity. In bullet-dynamic nuclear polarization this order is reversed. Pressurized gas is used to rapidly transfer the hyperpolarized solid to the secondary magnet, and the hyperpolarized solid is dissolved only upon arrival. A potential advantage of this approach is that it may avoid excessive dilution and the associated signal loss, in particular for small sample quantities. Previously, we have shown that liquid-state NMR spectra with polarization levels of up to 30 % may be recorded within less than 1 s after the departure of the hyperpolarized solid from the polarizing magnet. The resolution of the recorded spectra however was limited. The system consumed significant amounts of liquid helium, and substantial manual work was required in between experiments to prepare for the next shot. Here, we present a new bullet-DNP (dynamic nuclear polarization) system that addresses these limitations.

5.
Nat Commun ; 10(1): 1733, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30988293

RESUMEN

In dissolution-dynamic nuclear polarization, nuclear spins are hyperpolarized at cryogenic temperatures using radicals and microwave irradiation. The hyperpolarized solid is dissolved with hot solvent and the solution is transferred to a secondary magnet where strongly enhanced magnetic resonance signals are observed. Here we present a method for transferring the hyperpolarized solid. A bullet containing the frozen, hyperpolarized sample is ejected using pressurized helium gas, and shot into a receiving structure in the secondary magnet, where the bullet is retained and the polarized solid is dissolved rapidly. The transfer takes approximately 70 ms. A solenoid, wound along the entire transfer path ensures adiabatic transfer and limits radical-induced low-field relaxation. The method is fast and scalable towards small volumes suitable for high-resolution nuclear magnetic resonance spectroscopy while maintaining high concentrations of the target molecule. Polarization levels of approximately 30% have been observed for 1-13C-labelled pyruvic acid in solution.

6.
Faraday Discuss ; 212(0): 517-532, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30238100

RESUMEN

We present a 17O and 1H NMR study of molecular endofullerene H2O@C60 dissolved in the nematic liquid crystal N-(4-methoxybenzylidene)-4-butylaniline (MBBA). The 17O NMR peak is split into five components by the 17O residual quadrupolar coupling, each of which is split into a triplet by the 1H-17O residual dipolar coupling and scalar coupling. The splittings are analysed in terms of the partial alignment of the encapsulated water molecules. Order parameters describing the alignment are estimated. It is found that the preferential orientation of the endohedral water molecule has the molecular plane perpendicular to the liquid crystal director.

7.
Phys Rev Lett ; 120(26): 266001, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-30004780

RESUMEN

Water exists in two forms, para and ortho, that have nuclear spin states with different symmetries. Here we report the conversion of fullerene-encapsulated para water to ortho water. The enrichment of para water at low temperatures is monitored via changes in the electrical polarizability of the material. Upon rapid dissolution of the material in toluene the excess para water converts to ortho water. In H_{2}^{16}O@C_{60} the conversion leads to a slow increase in the NMR signal. In H_{2}^{17}O@C_{60} the conversion gives rise to weak signal enhancements attributed to quantum-rotor-induced nuclear spin polarization. The time constants for the para-to-ortho conversion of fullerene-encapsulated water in ambient temperature solution are estimated as 30±4 s for the ^{16}O isotopolog of water, and 16±3 s for the ^{17}O isotopolog.

8.
Phys Chem Chem Phys ; 20(15): 9755-9759, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29595200

RESUMEN

Monodeuterated methyl groups may support a long-lived nuclear spin state, with a relaxation time exceeding the conventional spin-lattice relaxation time T1. Dissolution-DNP (dynamic nuclear polarization) may be used to hyperpolarize such a long-lived spin state. This is demonstrated for the CH2D groups of a piperidine derivative. The polarized sample is manipulated in the ambient magnetic field of the laboratory, without destruction of the hyperpolarized singlet order. Strongly enhanced CH2D signals are observed more than one minute after dissolution, even in the presence of paramagnetic radicals, by which time the NMR signal from the hyperpolarized proton magnetization has completely disappeared.

9.
Magn Reson Chem ; 56(7): 610-618, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29460384

RESUMEN

Quantum-rotor-induced polarization is closely related to para-hydrogen-induced polarization. In both cases, the hyperpolarized spin order derives from rotational interaction and the Pauli principle by which the symmetry of the rotational ground state dictates the symmetry of the associated nuclear spin state. In quantum-rotor-induced polarization, there may be several spin states associated with the rotational ground state, and the hyperpolarization is typically generated by hetero-nuclear cross-relaxation. This review discusses preconditions for quantum-rotor-induced polarization for both the 1-dimensional methyl rotor and the asymmetric rotor H217 O@C60 , that is, a single water molecule encapsulated in fullerene C60 . Experimental results are presented for both rotors.

10.
Chemphyschem ; 19(3): 251-255, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29236341

RESUMEN

The 17 O isotopomer of the water-endofullerene H2 O@C60 displays a remarkable proton NMR spectrum, with six well resolved peaks. These peaks are due to the J-coupling between the water protons and the 17 O nucleus, which has spin-5/2. The resolution of these peaks is enabled by the suppression of water proton exchange by the fullerene cage. The six peaks display an unusual pattern of linewidths, which we model by a Liouville-space treatment of scalar relaxation due to quadrupolar relaxation of the 17 O nuclei. The data are consistent with rotational diffusion of the water molecules on the sub-picosecond timescale.

11.
J Magn Reson ; 286: 158-162, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29253726

RESUMEN

In cryogenic dissolution NMR experiments, a substance of interest is allowed to rest in a strong magnetic field at cryogenic temperature, before dissolving the substance in a warm solvent, transferring it to a high-resolution NMR spectrometer, and observing the solution-state NMR spectrum. In some cases, negative enhancements of the 13C NMR signals are observed, which have been attributed to quantum-rotor-induced polarization. We show that in the case of acetone (propan-2-one) the negative signal enhancements of the methyl 13C sites may be understood by invoking conventional cross-relaxation within the methyl groups. The 1H nuclei acquire a relative large net polarization through thermal equilibration in a magnetic field at low temperature, facilitated by the methyl rotation which acts as a relaxation sink; after dissolution, the 1H magnetization slowly returns to thermal equilibrium at high temperature, in part by cross-relaxation processes, which induce a transient negative polarization of nearby 13C nuclei. We provide evidence for this mechanism experimentally and theoretically by saturating the 1H magnetization using a radiofrequency field pulse sequence before dissolution and comparing the 13C magnetization evolution after dissolution with the results obtained from a conventional 1H-13C cross relaxation model of the CH3 moieties in acetone.

12.
J Phys Chem Lett ; 8(15): 3549-3555, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28708395

RESUMEN

We have induced hyperpolarized long-lived states in compounds containing 13C-bearing methyl groups by dynamic nuclear polarization (DNP) at cryogenic temperatures, followed by dissolution with a warm solvent. The hyperpolarized methyl long-lived states give rise to enhanced antiphase 13C NMR signals in solution, which often persist for times much longer than the 13C and 1H spin-lattice relaxation times under the same conditions. The DNP-induced effects are similar to quantum-rotor-induced polarization (QRIP) but are observed in a wider range of compounds because they do not depend critically on the height of the rotational barrier. We interpret our observations with a model in which nuclear Zeeman and methyl tunnelling reservoirs adopt an approximately uniform temperature, under DNP conditions. The generation of hyperpolarized NMR signals that persist for relatively long times in a range of methyl-bearing substances may be important for applications such as investigations of metabolism, enzymatic reactions, protein-ligand binding, drug screening, and molecular imaging.

13.
Phys Chem Chem Phys ; 19(19): 11793-11801, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28443877

RESUMEN

We report the NMR of the molecular endofullerenes H2@C60, H2O@C60 and HF@C60 dissolved in the nematic liquid crystal N-(4-methoxybenzylidene)-4-butylaniline (MBBA). The 1H NMR lines of H2 and H2O display a doublet splitting due to residual dipole-dipole coupling. The dipolar splitting depends on temperature in the nematic phase and vanishes above the nematic-isotropic phase transition. The 19F spectrum of HF@C60 dissolved in MBBA displays a doublet splitting in the nematic phase, with contributions from the 1H-19F dipole-dipole coupling and J-coupling. The phenomena are analyzed using a model in which the fullerene cages acquire a geometrical distortion, either through interaction with the liquid crystal environment, or through their interaction with the endohedral molecules. The distorted cages become partially oriented with respect to the liquid crystal director, and the endohedral molecules become partially oriented with respect to the distorted cages.

14.
Nat Chem ; 8(10): 953-7, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27657872

RESUMEN

The cavity inside fullerenes provides a unique environment for the study of isolated atoms and molecules. We report the encapsulation of hydrogen fluoride inside C60 using molecular surgery to give the endohedral fullerene HF@C60. The key synthetic step is the closure of the open fullerene cage with the escape of HF minimized. The encapsulated HF molecule moves freely inside the cage and exhibits quantization of its translational and rotational degrees of freedom, as revealed by inelastic neutron scattering and infrared spectroscopy. The rotational and vibrational constants of the encapsulated HF molecules were found to be redshifted relative to free HF. The NMR spectra display a large (1)H-(19)F J coupling typical of an isolated species. The dipole moment of HF@C60 was estimated from the temperature dependence of the dielectric constant at cryogenic temperatures and showed that the cage shields around 75% of the HF dipole.

15.
Nat Commun ; 6: 8112, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26299447

RESUMEN

Water exists in two spin isomers, ortho and para, that have different nuclear spin states. In bulk water, rapid proton exchange and hindered molecular rotation obscure the direct observation of two spin isomers. The supramolecular endofullerene H2O@C60 provides freely rotating, isolated water molecules even at cryogenic temperatures. Here we show that the bulk dielectric constant of this substance depends on the ortho/para ratio, and changes slowly in time after a sudden temperature jump, due to nuclear spin conversion. The attribution of the effect to ortho-para conversion is validated by comparison with nuclear magnetic resonance and quantum theory. The change in dielectric constant is consistent with an electric dipole moment of 0.51±0.05 Debye for an encapsulated water molecule, indicating the partial shielding of the water dipole by the encapsulating cage. The dependence of bulk dielectric constant on nuclear spin isomer composition appears to be a previously unreported physical phenomenon.

16.
J Chem Phys ; 142(4): 044506, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25637994

RESUMEN

Long-lived nuclear spin states have a relaxation time much longer than the longitudinal relaxation time T1. Long-lived states extend significantly the time scales that may be probed with magnetic resonance, with possible applications to transport and binding studies, and to hyperpolarised imaging. Rapidly rotating methyl groups in solution may support a long-lived state, consisting of a population imbalance between states of different spin exchange symmetries. Here, we expand the formalism for describing the behaviour of long-lived nuclear spin states in methyl groups, with special attention to the hyperpolarisation effects observed in (13)CH3 groups upon rapidly converting a material with low-barrier methyl rotation from the cryogenic solid state to a room-temperature solution [M. Icker and S. Berger, J. Magn. Reson. 219, 1 (2012)]. We analyse the relaxation properties of methyl long-lived states using semi-classical relaxation theory. Numerical simulations are supplemented with a spherical-tensor analysis, which captures the essential properties of methyl long-lived states.

17.
J Magn Reson ; 250: 25-28, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25482571

RESUMEN

Quantum-rotor-induced polarisation (QRIP) enhancement is exhibited by substances which contain freely rotating methyl groups in the solid state, provided that the methyl groups contain a (13)C nucleus. Strong signal enhancements are observed in solution NMR when the material is first equilibrated at cryogenic temperatures, then rapidly dissolved with a warm solvent and transferred into an NMR magnet. QRIP leads to strongly-enhanced (13)C NMR signals, but relatively weak enhancements of the (1)H signals. We show that the (1)H signals suffer from a partial cancellation of degenerate contributions, which may be corrected by applying a frequency-selective π pulse to the inner peaks of the (13)C multiplet prior to (1)H observation.

18.
J Chem Phys ; 140(19): 194306, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24852537

RESUMEN

The water-endofullerene H2O@C60 provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H2O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H2O molecules is catalysed by (13)C nuclei present in the cages.

19.
J Am Chem Soc ; 135(50): 18746-9, 2013 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-24252212

RESUMEN

Substances containing rapidly rotating methyl groups may exhibit long-lived states (LLSs) in solution, with relaxation times substantially longer than the conventional spin-lattice relaxation time T1. The states become long-lived through rapid internal rotation of the CH3 group, which imposes an approximate symmetry on the fluctuating nuclear spin interactions. In the case of very low CH3 rotational barriers, a hyperpolarized LLS is populated by thermal equilibration at liquid helium temperature. Following dissolution, cross-relaxation of the hyperpolarized LLS, induced by heteronuclear dipolar couplings, generates strongly enhanced antiphase NMR signals. This mechanism explains the NMR signal enhancements observed for (13)C-γ-picoline (Icker, M.; Berger, S. J. Magn. Reson. 2012, 219, 1-3).

20.
Rev Sci Instrum ; 83(8): 083113, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22938280

RESUMEN

A nuclear magnetic resonance apparatus for experiments in pulsed high magnetic fields is described. The magnetic field pulses created together with various magnet coils determine the requirements such an apparatus has to fulfill to be operated successfully in pulsed fields. Independent of the chosen coil it is desirable to operate the entire experiment at the highest possible bandwidth such that a correspondingly large temporal fraction of the magnetic field pulse can be used to probe a given sample. Our apparatus offers a bandwidth of up to 20 MHz and has been tested successfully at the Hochfeld-Magnetlabor Dresden, even in a very fast dual coil magnet that has produced a peak field of 94.2 T. Using a medium-sized single coil with a significantly slower dependence, it is possible to perform advanced multi-pulse nuclear magnetic resonance experiments. As an example we discuss a Carr-Purcell spin echo sequence at a field of 62 T.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...