Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Netw Neurosci ; 6(2): 339-356, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35733434

RESUMEN

Multiple sclerosis (MS) features extensive connectivity changes, but how structural and functional connectivity relate, and whether this relation could be a useful biomarker for cognitive impairment in MS is unclear. This study included 79 MS patients and 40 healthy controls (HCs). Patients were classified as cognitively impaired (CI) or cognitively preserved (CP). Structural connectivity was determined using diffusion MRI and functional connectivity using resting-state magnetoencephalography (MEG) data (theta, alpha1, and alpha2 bands). Structure-function coupling was assessed by correlating modalities, and further explored in frequency bands that significantly correlated with whole-brain structural connectivity. Functional correlates of short- and long-range structural connections (based on tract length) were then specifically assessed. Receiving operating curve analyses were performed on coupling values to identify biomarker potential. Only the theta band showed significant correlations between whole-brain structural and functional connectivity (rho = -0.26, p = 0.023, only in MS). Long-range structure-function coupling was stronger in CI patients compared to HCs (p = 0.005). Short-range coupling showed no group differences. Structure-function coupling was not a significant classifier of cognitive impairment for any tract length (short-range area under the curve (AUC) = 0.498, p = 0.976, long-range AUC = 0.611, p = 0.095). Long-range structure-function coupling was stronger in CI MS compared to HCs, but more research is needed to further explore this measure as biomarkers in MS.

2.
Mult Scler ; 27(13): 2031-2039, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33683158

RESUMEN

BACKGROUND: The impact of cerebellar damage and (dys)function on cognition remains understudied in multiple sclerosis. OBJECTIVE: To assess the cognitive relevance of cerebellar structural damage and functional connectivity (FC) in relapsing-remitting multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS). METHODS: This study included 149 patients with early RRMS, 81 late RRMS, 48 SPMS and 82 controls. Cerebellar cortical imaging included fractional anisotropy, grey matter volume and resting-state functional magnetic resonance imaging (MRI). Cerebellar FC was assessed with literature-based resting-state networks, using static connectivity (that is, conventional correlations), and dynamic connectivity (that is, fluctuations in FC strength). Measures were compared between groups and related to disability and cognition. RESULTS: Cognitive impairment (CI) and cerebellar damage were worst in SPMS. Only SPMS showed cerebellar connectivity changes, compared to early RRMS and controls. Lower static FC was seen in fronto-parietal and default-mode networks. Higher dynamic FC was seen in dorsal and ventral attention, default-mode and deep grey matter networks. Cerebellar atrophy and higher dynamic FC together explained 32% of disability and 24% of cognitive variance. Higher dynamic FC was related to working and verbal memory and to information processing speed. CONCLUSION: Cerebellar damage and cerebellar connectivity changes were most prominent in SPMS and related to worse CI.


Asunto(s)
Disfunción Cognitiva , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Cerebelo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/complicaciones , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen
3.
Mult Scler ; 27(9): 1364-1373, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33104448

RESUMEN

BACKGROUND: Network abnormalities could help explain physical disability in multiple sclerosis (MS), which remains poorly understood. OBJECTIVE: This study investigates functional network efficiency changes in the sensorimotor system. METHODS: We included 222 MS patients, divided into low disability (LD, Expanded Disability Status Scale (EDSS) ⩽3.5, n = 185) and high disability (HD, EDSS ⩾6, n = 37), and 82 healthy controls (HC). Functional connectivity was assessed between 23 sensorimotor regions. Measures of efficiency were computed and compared between groups using general linear models corrected for age and sex. Binary logistic regression models related disability status to local functional network efficiency (LE), brain volumes and demographics. Functional connectivity patterns of regions important for disability were explored. RESULTS: HD patients demonstrated significantly higher LE of the left primary somatosensory cortex (S1) and right pallidum compared to LD and HC, and left premotor cortex compared to HC only. The logistic regression model for disability (R2 = 0.38) included age, deep grey matter volume and left S1 LE. S1 functional connectivity was increased with prefrontal and secondary sensory areas in HD patients, compared to LD and HC. CONCLUSION: Clinical disability in MS associates with functional sensorimotor increases in efficiency and connectivity, centred around S1, independent of structural damage.


Asunto(s)
Personas con Discapacidad , Corteza Motora , Esclerosis Múltiple , Humanos , Modelos Lineales , Imagen por Resonancia Magnética
4.
Brain ; 143(1): 150-160, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31730165

RESUMEN

An efficient network such as the human brain features a combination of global integration of information, driven by long-range connections, and local processing involving short-range connections. Whether these connections are equally damaged in multiple sclerosis is unknown, as is their relevance for cognitive impairment and brain function. Therefore, we cross-sectionally investigated the association between damage to short- and long-range connections with structural network efficiency, the functional connectome and cognition. From the Amsterdam multiple sclerosis cohort, 133 patients (age = 54.2 ± 9.6) with long-standing multiple sclerosis and 48 healthy controls (age = 50.8 ± 7.0) with neuropsychological testing and MRI were included. Structural connectivity was estimated from diffusion tensor images using probabilistic tractography (MRtrix 3.0) between pairs of brain regions. Structural connections were divided into short- (length < quartile 1) and long-range (length > quartile 3) connections, based on the mean distribution of tract lengths in healthy controls. To determine the severity of damage within these connections, (i) fractional anisotropy as a measure for integrity; (ii) total number of fibres; and (iii) percentage of tract affected by lesions were computed for each connecting tract and averaged for short- and long-range connections separately. To investigate the impact of damage in these connections for structural network efficiency, global efficiency was computed. Additionally, resting-state functional connectivity was computed between each pair of brain regions, after artefact removal with FMRIB's ICA-based X-noiseifier. The functional connectivity similarity index was computed by correlating individual functional connectivity matrices with an average healthy control connectivity matrix. Our results showed that the structural network had a reduced efficiency and integrity in multiple sclerosis relative to healthy controls (both P < 0.05). The long-range connections showed the largest reduction in fractional anisotropy (z = -1.03, P < 0.001) and total number of fibres (z = -0.44, P < 0.01), whereas in the short-range connections only fractional anisotropy was affected (z = -0.34, P = 0.03). Long-range connections also demonstrated a higher percentage of tract affected by lesions than short-range connections, independent of tract length (P < 0.001). Damage to long-range connections was more strongly related to structural network efficiency and cognition (fractional anisotropy: r = 0.329 and r = 0.447. number of fibres r = 0.321 and r = 0.278. and percentage of lesions: r = -0.219; r = -0.426, respectively) than damage to short-range connections. Only damage to long-distance connections correlated with a more abnormal functional network (fractional anisotropy: r = 0.226). Our findings indicate that long-range connections are more severely affected by multiple sclerosis-specific damage than short-range connections. Moreover compared to short-range connections, damage to long-range connections better explains network efficiency and cognition.


Asunto(s)
Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Esclerosis Múltiple/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto , Anisotropía , Encéfalo/fisiopatología , Estudios de Casos y Controles , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/psicología , Imagen de Difusión Tensora , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/fisiopatología , Esclerosis Múltiple/psicología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Pruebas Neuropsicológicas , Sustancia Blanca/fisiopatología
5.
Neurology ; 93(14): e1348-e1359, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31484713

RESUMEN

OBJECTIVE: To determine which pathologic process could be responsible for the acceleration of cognitive decline during the course of multiple sclerosis (MS), using longitudinal structural MRI, which was related to cognitive decline in relapsing-remitting MS (RRMS) and progressive MS (PMS). METHODS: A prospective cohort of 230 patients with MS (179 RRMS and 51 PMS) and 59 healthy controls was evaluated twice with 5-year (mean 4.9, SD 0.94) interval during which 22 patients with RRMS converted to PMS. Annual rates of cortical and deep gray matter atrophy as well as lesion volume increase were computed on longitudinal (3T) MRI data and correlated to the annual rate of cognitive decline as measured using an extensive cognitive evaluation at both time points. RESULTS: The deep gray matter atrophy rate did not differ between PMS and RRMS (-0.82%/year vs -0.71%/year, p = 0.11), while faster cortical atrophy was observed in PMS (-0.87%/year vs -0.48%/year, p < 0.01). Similarly, faster cognitive decline was observed in PMS compared to RRMS (p < 0.01). Annual cognitive decline was related to the rate of annual lesion volume increase in stable RRMS (r = -0.17, p = 0.03) to the rate of annual deep gray matter atrophy in converting RRMS (r = 0.50, p = 0.02) and annual cortical atrophy in PMS (r = 0.35, p = 0.01). CONCLUSIONS: These results indicate that cortical atrophy and cognitive decline accelerate together during the course of MS. Substrates of cognitive decline shifted from worsening lesional pathology in stable RRMS to deep gray matter atrophy in converting RRMS and to accelerated cortical atrophy in PMS only.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/psicología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/psicología , Adulto , Anciano , Atrofia/diagnóstico por imagen , Atrofia/epidemiología , Atrofia/psicología , Disfunción Cognitiva/epidemiología , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/tendencias , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/epidemiología , Estudios Prospectivos
6.
Radiology ; 292(2): 449-457, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31237498

RESUMEN

Background Previous studies have demonstrated extensive functional network disturbances in patients with multiple sclerosis (MS), showing a less efficient brain network. Recent studies indicate that the dynamic properties of the brain network show a strong correlation with cognitive function. Purpose To investigate network dynamics on functional MRI in cognitively impaired patients with MS. Materials and Methods In secondary analysis of prospectively acquired data, with imaging performed between 2008 and 2012, differences in regional functional network dynamics (ie, eigenvector centrality dynamics) between cognitively impaired and cognitively preserved participants with MS were investigated. Functional network dynamics were computed on images from functional MRI (3 T) by using a sliding-window approach. Cognitively impaired and preserved groups were compared by using a clusterwise permutation-based method. Results The study included 96 healthy control subjects and 332 participants with MS (including 226 women and 106 men; median age, 48.1 years ± 11.0). Among the 332 participants with MS, 87 were cognitively impaired and 180 had preserved cognitive function; mildly impaired patients (n = 65) were excluded. The cognitively impaired group included a higher proportion of men compared with the cognitively preserved group (35 of 87 [40%] vs 48 of 180 [27%], respectively; P = .02) and had a higher mean age (51.1 years vs 46.3 years, respectively; P < .01). The clusterwise permutation-based comparison at P less than .05 showed reduced centrality dynamics in default-mode, frontoparietal, and visual network regions on functional MRI in cognitively impaired participants versus cognitively preserved participants. A subsequent correlation and hierarchical clustering analysis revealed that the default-mode and visual networks normally demonstrate negatively correlated fluctuations in functional importance (r = -0.23 in healthy control subjects), with an almost complete loss of this negative correlation in cognitively impaired participants compared with cognitively preserved participants (r = -0.04 vs r = -0.14; corrected P = .02). Conclusion As shown on functional MRI, cognitively impaired patients with multiple sclerosis not only demonstrate reduced dynamics in default-mode, frontoparietal, and visual networks, but also show a loss of interplay between default-mode and visual networks. © RSNA, 2019 Online supplemental material is available for this article. See also the article by Eijlers et al and the editorial by Zivadinov and Dwyer in this issue.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Disfunción Cognitiva/complicaciones , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/fisiopatología , Mapeo Encefálico/métodos , Disfunción Cognitiva/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
8.
J Neurol ; 266(1): 212-222, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30467603

RESUMEN

OBJECTIVE: Abnormalities in segregative and integrative properties of brain networks have been observed in multiple sclerosis (MS) and are related to clinical functioning. This study aims to investigate the micro-scale correlates of macro-scale network measures of segregation and integration in MS. METHODS: Eight MS patients underwent post-mortem in situ whole-brain diffusion tensor (DT) imaging and subsequent brain dissection. Macro-scale structural network topology was derived from DT data using graph theory. Clustering coefficient and mean white matter (WM) fiber length were measures of nodal segregation and integration. Thirty-three tissue blocks were collected from five cortical brain regions. Using immunohistochemistry micro-scale tissue properties were evaluated, including, neuronal size, neuronal density, axonal density and total cell density. Nodal network properties and tissue properties were correlated. RESULTS: A negative correlation between clustering coefficient and WM fiber length was found. Higher clustering coefficient was associated with smaller neuronal size and lower axonal density, and vice versa for fiber length. Higher whole-brain WM lesion load was associated with higher whole-brain clustering, shorter whole-brain fiber length, lower neuronal size and axonal density. CONCLUSION: Structural network properties on MRI associate with neuronal size and axonal density, suggesting that macro-scale network measures may grasp cortical neuroaxonal degeneration in MS.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen de Difusión Tensora , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Neuronas/patología , Anciano , Anciano de 80 o más Años , Recuento de Células , Tamaño de la Célula , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología
9.
Brain ; 141(9): 2605-2618, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30169585

RESUMEN

Cognitive decline is common in multiple sclerosis and strongly affects overall quality of life. Despite the identification of cross-sectional MRI correlates of cognitive impairment, predictors of future cognitive decline remain unclear. The objective of this study was to identify which MRI measures of structural damage, demographic and/or clinical measures at baseline best predict cognitive decline, during a 5-year follow-up period. A total of 234 patients with clinically definite multiple sclerosis and 60 healthy control subjects were examined twice, with a 5-year interval (mean = 4.9 years, standard deviation = 0.9). An extensive neuropsychological evaluation was performed at both time points and the reliable change index was computed to evaluate cognitive decline. Both whole-brain and regional MRI (3 T) measures were assessed at baseline, including white matter lesion volume, diffusion-based white matter integrity, cortical and deep grey matter volume. Logistic regression analyses were performed to determine which baseline measures best predicted cognitive decline in the entire sample as well as in early relapsing-remitting (symptom duration <10 years), late relapsing-remitting (symptom duration ≥10 years) and progressive phenotypes. At baseline, patients with multiple sclerosis had a mean disease duration of 14.8 (standard deviation = 8.4) years and 96/234 patients (41%) were classified as cognitively impaired. A total of 66/234 patients (28%) demonstrated cognitive decline during follow-up, with higher frequencies in progressive compared to relapsing-remitting patients: 18/33 secondary progressive patients (55%), 10/19 primary progressive patients (53%) and 38/182 relapsing-remitting patients (21%). A prediction model that included only whole-brain MRI measures (Nagelkerke R2 = 0.22, P < 0.001) showed cortical grey matter volume as the only significant MRI predictor of cognitive decline, while a prediction model that assessed regional MRI measures (Nagelkerke R2 = 0.35, P < 0.001) indicated integrity loss of the anterior thalamic radiation, lesions in the superior longitudinal fasciculus and temporal atrophy as significant MRI predictors for cognitive decline. Disease stage specific regressions showed that cognitive decline in early relapsing-remitting multiple sclerosis was predicted by white matter integrity damage, while cognitive decline in late relapsing-remitting and progressive multiple sclerosis was predicted by cortical atrophy. These results indicate that patients with more severe structural damage at baseline, and especially cortical atrophy, are more prone to suffer from cognitive decline. New studies now need to further elucidate the underlying mechanisms leading to cortical atrophy, evaluate the value of including cortical atrophy as a possible outcome marker in clinical trials as well as study its potential use in individual patient management.


Asunto(s)
Disfunción Cognitiva/fisiopatología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/fisiopatología , Adulto , Atrofia/patología , Encéfalo/patología , Corteza Cerebral/patología , Disfunción Cognitiva/metabolismo , Estudios Transversales , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Sustancia Gris/patología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/fisiopatología , Red Nerviosa/patología , Pruebas Neuropsicológicas , Pronóstico , Calidad de Vida , Sustancia Blanca/patología
10.
Brain Behav ; 8(5): e00954, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29761008

RESUMEN

Introduction: Brain dynamics (i.e., variable strength of communication between areas), even at the scale of seconds, are thought to underlie complex human behavior, such as learning and memory. In multiple sclerosis (MS), memory problems occur often and have so far only been related to "stationary" brain measures (e.g., atrophy, lesions, activation and stationary (s) functional connectivity (FC) over an entire functional scanning session). However, dynamics in FC (dFC) between the hippocampus and the (neo)cortex may be another important neurobiological substrate of memory impairment in MS that has not yet been explored. Therefore, we investigated hippocampal dFC during a functional (f) magnetic resonance imaging (MRI) episodic memory task and its relationship with verbal and visuospatial memory performance outside the MR scanner. Methods: Thirty-eight MS patients and 29 healthy controls underwent neuropsychological tests to assess memory function. Imaging (1.5T) was obtained during performance of a memory task. We assessed hippocampal volume, functional activation, and sFC (i.e., FC of the hippocampus with the rest of the brain averaged over the entire scan, using an atlas-based approach). Dynamic FC of the hippocampus was calculated using a sliding window approach. Results: No group differences were found in hippocampal activation, sFC, and dFC. However, stepwise forward regression analyses in patients revealed that lower dFC of the left hippocampus (standardized ß = -0.30; p = .021) could explain an additional 7% of variance (53% in total) in verbal memory, in addition to female sex and larger left hippocampal volume. For visuospatial memory, lower dFC of the right hippocampus (standardized ß = -0.38; p = .013) could explain an additional 13% of variance (24% in total) in addition to higher sFC of the right hippocampus. Conclusion: Low hippocampal dFC is an important indicator for maintained memory performance in MS, in addition to other hippocampal imaging measures. Hence, brain dynamics may offer new insights into the neurobiological mechanisms underlying memory (dys)function.


Asunto(s)
Encefalopatías/patología , Hipocampo/patología , Trastornos de la Memoria/patología , Memoria Episódica , Esclerosis Múltiple/patología , Adolescente , Adulto , Anciano , Atrofia/patología , Atrofia/fisiopatología , Encefalopatías/fisiopatología , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Trastornos de la Memoria/fisiopatología , Persona de Mediana Edad , Esclerosis Múltiple/fisiopatología , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología , Pruebas Neuropsicológicas , Adulto Joven
11.
Radiology ; 288(2): 544-551, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29786489

RESUMEN

Purpose To investigate the discrepancy between patients with multiple sclerosis (MS) without atrophy who have already developed cognitive impairment and patients with MS with atrophy who have preserved cognitive function. Materials and Methods This retrospective imaging study, with imaging acquired between 2008 and 2012, included 332 patients with MS (106 men and 226 women; mean age, 48.1 years; range, 23.0-72.5 years) and 96 healthy control participants. Cognitive impairment was defined as cognitive performance of z less than -1.5 compared with that in control participants in greater than or equal to two cognitive domains. Atrophy was defined as cortical and deep gray matter volumes of z less than -1.5 compared with that in control participants. White matter lesions were assessed with T2-imaging, tract fractional anisotropy (ie, integrity) with diffusion MRI, and regional centrality (ie, importance within network) with functional MRI. Within each atrophy group, patients with cognitive impairment and preserved cognitive function were compared and regression analyses were performed to predict cognitive impairment. Results A total of 132 of 328 patients with MS had no atrophy; of these, 42 of 132 (32%) had cognitive impairment. Cognitive impairment in patients without atrophy was predicted by level of education (Wald test, 11.63; P < .01) and posterior cingulate centrality (Wald test, 6.82; P < .01). A total of 65 of 328 patients with MS had atrophy; of these, 49 of 65 (75%) had cognitive impairment. Cognitive impairment in patients with atrophy was predicted by white matter tract fractional anisotropy (Wald test, 4.89; P = .03) and posterior cingulate centrality (Wald test, 7.19; P < .01). Conclusion Cognitive impairment was related to white matter damage, but only in patients with MS with atrophy. In patients without atrophy, a lower level of education was most important for cognitive impairment. Posterior cingulate cortex showed functional abnormalities in all MS groups with cognitive impairment, regardless of atrophy.


Asunto(s)
Encéfalo/patología , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/diagnóstico , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/complicaciones , Pruebas Neuropsicológicas/estadística & datos numéricos , Adulto , Anciano , Anisotropía , Atrofia , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/patología , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Estudios Retrospectivos , Adulto Joven
12.
J Neurol Neurosurg Psychiatry ; 89(2): 205-210, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28986469

RESUMEN

OBJECTIVE: Functional connectivity is known to increase as well as decrease throughout the brain in multiple sclerosis (MS), which could represent different stages of the disease. In addition, functional connectivity changes could follow the atrophy pattern observed with disease progression, that is, moving from the deep grey matter towards the cortex. This study investigated when and where connectivity changes develop and explored their clinical and cognitive relevance across different MS stages. METHODS: A cohort of 121 patients with early relapsing-remitting MS (RRMS), 122 with late RRMS and 53 with secondary progressive MS (SPMS) as well as 96 healthy controls underwent MRI and neuropsychological testing. Functional connectivity changes were investigated for (1) within deep grey matter connectivity, (2) connectivity between the deep grey matter and cortex and (3) within-cortex connectivity. A post hoc regional analysis was performed to identify which regions were driving the connectivity changes. RESULTS: Patients with late RRMS and SPMS showed increased connectivity of the deep grey matter, especially of the putamen and palladium, with other deep grey matter structures and with the cortex. Within-cortex connectivity was decreased, especially for temporal, occipital and frontal regions, but only in SPMS relative to early RRMS. Deep grey matter connectivity alterations were related to cognition and disability, whereas within-cortex connectivity was only related to disability. CONCLUSION: Increased connectivity of the deep grey matter became apparent in late RRMS and further increased in SPMS. The additive effect of cortical network degeneration, which was only seen in SPMS, may explain the sudden clinical deterioration characteristic to this phase of the disease.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Adulto , Atención , Estudios de Casos y Controles , Corteza Cerebral/fisiopatología , Progresión de la Enfermedad , Función Ejecutiva , Femenino , Neuroimagen Funcional , Sustancia Gris/fisiopatología , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria a Corto Plazo , Persona de Mediana Edad , Esclerosis Múltiple Crónica Progresiva/fisiopatología , Esclerosis Múltiple Crónica Progresiva/psicología , Esclerosis Múltiple Recurrente-Remitente/fisiopatología , Esclerosis Múltiple Recurrente-Remitente/psicología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Pruebas Neuropsicológicas , Índice de Severidad de la Enfermedad
13.
Neurology ; 88(22): 2107-2114, 2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28468841

RESUMEN

OBJECTIVE: To investigate default-mode network (DMN) and frontoparietal network (FPN) dysfunction in cognitively impaired (CI) patients with multiple sclerosis (MS) because these networks strongly relate to cognition and contain most of the hubs of the brain. METHODS: Resting-state fMRI and neuropsychological assessments were performed in 322 patients with MS and 96 healthy controls (HCs). Patients with MS were classified as CI (z score < -2.0 on at least 2 tests; n = 87), mildly cognitively impaired (z score < -1.5 on at least 2 tests and not CI; n = 65), and cognitively preserved (CP; n = 180). Within-network connectivity, connectivity with the rest of the brain, and between-network connectivity were calculated and compared between groups. Connectivity values were normalized for individual means and SDs. RESULTS: Only in CI, both the DMN and FPN showed increased connectivity with the rest of the brain compared to HCs and CP, with no change in within- or between-network connectivity. Regionally, this increased connectivity was driven by the inferior parietal, posterior cingulate, and angular gyri. Increased connectivity with the rest of the brain correlated with worse cognitive performance, namely attention for the FPN as well as information processing speed and working memory for both networks. CONCLUSIONS: In CI patients with MS, the DMN and FPN showed increased connectivity with the rest of the brain, while normal within- and between-network connectivity levels were maintained. These findings indicate that cognitive impairment in MS features disturbed communication of hub-rich networks, but only with the more peripheral (i.e., nonhub) regions of the brain.


Asunto(s)
Encéfalo/fisiopatología , Disfunción Cognitiva/fisiopatología , Esclerosis Múltiple/fisiopatología , Esclerosis Múltiple/psicología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico por imagen , Países Bajos , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Pruebas Neuropsicológicas , Descanso
14.
Neurology ; 88(10): 952-960, 2017 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-28179464

RESUMEN

OBJECTIVE: To investigate how changes in functional network hierarchy determine cognitive impairment in multiple sclerosis (MS). METHODS: A cohort consisting of 332 patients with MS (age 48.1 ± 11.0 years, symptom duration 14.6 ± 8.4 years) and 96 healthy controls (HCs; age 45.9 ± 10.4 years) underwent structural MRI, fMRI, and extensive neuropsychological testing. Patients were divided into 3 groups: cognitively impaired (CI; n = 87), mildly cognitively impaired (MCI; n = 65), and cognitively preserved (CP; n = 180). The functional importance of brain regions was quantified with degree centrality, the average strength of the functional connections of a brain region with the rest of the brain, and eigenvector centrality, which adds to this concept by adding additional weight to connections with brain hubs because these are known to be especially important. Centrality values were calculated for each gray matter voxel based on resting-state fMRI data, registered to standard space. Group differences were assessed with a cluster-wise permutation-based method corrected for age, sex, and education. RESULTS: CI patients demonstrated widespread centrality increases compared to both HCs and CP patients, mainly in regions making up the default-mode network. Centrality decreases were similar in all patient groups compared to HCs, mainly in occipital and sensorimotor areas. Results were robust across centrality measures. CONCLUSIONS: Patients with MS with cognitive impairment show hallmark alterations in functional network hierarchy with increased relative importance (centrality) of the default-mode network.


Asunto(s)
Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/patología , Esclerosis Múltiple/complicaciones , Redes Neurales de la Computación , Adulto , Anciano , Encéfalo/diagnóstico por imagen , Trastornos del Conocimiento/diagnóstico por imagen , Estudios de Cohortes , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Pruebas Neuropsicológicas
15.
Mult Scler ; 22(11): 1429-1437, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26733423

RESUMEN

BACKGROUND: While our knowledge of white matter (WM) pathology underlying cognitive impairment in relapsing remitting multiple sclerosis (MS) is increasing, equivalent understanding in those with secondary progressive (SP) MS lags behind. OBJECTIVE: The aim of this study is to examine whether the extent and severity of WM tract damage differ between cognitively impaired (CI) and cognitively preserved (CP) secondary progressive multiple sclerosis (SPMS) patients. METHODS: Conventional magnetic resonance imaging (MRI) and diffusion MRI were acquired from 30 SPMS patients and 32 healthy controls (HC). Cognitive domains commonly affected in MS patients were assessed. Linear regression was used to predict cognition. Diffusion measures were compared between groups using tract-based spatial statistics (TBSS). RESULTS: A total of 12 patients were classified as CI, and processing speed was the most commonly affected domain. The final regression model including demographic variables and radial diffusivity explained the greatest variance of cognitive performance (R2 = 0.48, p = 0.002). SPMS patients showed widespread loss of WM integrity throughout the WM skeleton when compared with HC. When compared with CP patients, CI patients showed more extensive and severe damage of several WM tracts, including the fornix, superior longitudinal fasciculus and forceps major. CONCLUSION: Loss of WM integrity assessed using TBSS helps to explain cognitive decline in SPMS patients.


Asunto(s)
Disfunción Cognitiva/diagnóstico por imagen , Leucoencefalopatías/diagnóstico por imagen , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Adulto , Estudios de Casos y Controles , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/psicología , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Leucoencefalopatías/complicaciones , Leucoencefalopatías/psicología , Modelos Lineales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Crónica Progresiva/complicaciones , Esclerosis Múltiple Crónica Progresiva/psicología , Pruebas Neuropsicológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...