Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Philos Trans A Math Phys Eng Sci ; 381(2249): 20220056, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37150205

RESUMEN

The Southern Ocean greatly contributes to the regulation of the global climate by controlling important heat and carbon exchanges between the atmosphere and the ocean. Rates of climate change on decadal timescales are therefore impacted by oceanic processes taking place in the Southern Ocean, yet too little is known about these processes. Limitations come both from the lack of observations in this extreme environment and its inherent sensitivity to intermittent processes at scales that are not well captured in current Earth system models. The Southern Ocean Carbon and Heat Impact on Climate programme was launched to address this knowledge gap, with the overall objective to understand and quantify variability of heat and carbon budgets in the Southern Ocean through an investigation of the key physical processes controlling exchanges between the atmosphere, ocean and sea ice using a combination of observational and modelling approaches. Here, we provide a brief overview of the programme, as well as a summary of some of the scientific progress achieved during its first half. Advances range from new evidence of the importance of specific processes in Southern Ocean ventilation rate (e.g. storm-induced turbulence, sea-ice meltwater fronts, wind-induced gyre circulation, dense shelf water formation and abyssal mixing) to refined descriptions of the physical changes currently ongoing in the Southern Ocean and of their link with global climate. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.

2.
Phys Med Biol ; 65(15): 155014, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32392543

RESUMEN

Thoracic tumours are increasingly considered indications for pencil beam scanned proton therapy (PBS-PT) treatments. Conservative robustness settings have been suggested due to potential range straggling effects caused by the lung micro-structure. Using proton radiography (PR) and a 4D porcine lung phantom, we experimentally assess range errors to be considered in robust treatment planning for thoracic indications. A human-chest-size 4D phantom hosting inflatable porcine lungs and corresponding 4D computed tomography (4DCT) were used. Five PR frames were planned to intersect the phantom at various positions. Integral depth-dose curves (IDDs) per proton spot were measured using a multi-layer ionisation chamber (MLIC). Each PR frame consisted of 81 spots with an assigned energy of 210 MeV (full width at half maximum (FWHM) 8.2 mm). Each frame was delivered five times while simultaneously acquiring the breathing signal of the 4D phantom, using an ANZAI load cell. The synchronised ANZAI and delivery log file information was used to retrospectively sort spots into their corresponding breathing phase. Based on this information, IDDs were simulated by the treatment planning system (TPS) Monte Carlo dose engine on a dose grid of 1 mm. In addition to the time-resolved TPS calculations on the 4DCT phases, IDDs were calculated on the average CT. Measured IDDs were compared with simulated ones, calculating the range error for each individual spot. In total, 2025 proton spots were individually measured and analysed. The range error of a specific spot is reported relative to its water equivalent path length (WEPL). The mean relative range error was 1.2% (1.5 SD 2.3 %) for the comparison with the time-resolved TPS calculations, and 1.0% (1.5 SD 2.2 %) when comparing to TPS calculations on the average CT. The determined mean relative range errors justify the use of 3% range uncertainty for robust treatment planning in a clinical setting for thoracic indications.


Asunto(s)
Tomografía Computarizada Cuatridimensional/instrumentación , Pulmón/diagnóstico por imagen , Fantasmas de Imagen , Incertidumbre , Algoritmos , Animales , Humanos , Pulmón/fisiología , Método de Montecarlo , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador , Respiración , Porcinos
3.
Phys Med ; 70: 49-57, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31968277

RESUMEN

For radiation therapy, it is crucial to ensure that the delivered dose matches the planned dose. Errors in the dose calculations done in the treatment planning system (TPS), treatment delivery errors, other software bugs or data corruption during transfer might lead to significant differences between predicted and delivered doses. As such, patient specific quality assurance (QA) of dose distributions, through experimental validation of individual fields, is necessary. These measurement based approaches, however, are performed with 2D detectors, with limited resolution and in a water phantom. Moreover, they are work intensive and often impose a bottleneck to treatment efficiency. In this work, we investigated the potential to replace measurement-based approach with a simulation-based patient specific QA using a Monte Carlo (MC) code as independent dose calculation engine in combination with treatment log files. Our developed QA platform is composed of a web interface, servers and computation scripts, and is capable to autonomously launch simulations, identify and report dosimetric inconsistencies. To validate the beam model of independent MC engine, in-water simulations of mono-energetic layers and 30 SOBP-type dose distributions were performed. Average Gamma passing ratio 99 ± 0.5% for criteria 2%/2 mm was observed. To demonstrate feasibility of the proposed approach, 10 clinical cases such as head and neck, intracranial indications and craniospinal axis, were retrospectively evaluated via the QA platform. The results obtained via QA platform were compared to QA results obtained by measurement-based approach. This comparison demonstrated consistency between the methods, while the proposed approach significantly reduced in-room time required for QA procedures.


Asunto(s)
Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Simulación por Computador , Rayos gamma , Humanos , Modelos Teóricos , Método de Montecarlo , Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud , Radiometría/métodos , Dosificación Radioterapéutica , Estudios Retrospectivos , Programas Informáticos , Validación de Programas de Computación
4.
Phys Med Biol ; 65(3): 03NT02, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31896099

RESUMEN

Proton therapy is affected by range uncertainty, which is partly caused by an ambiguous conversion from x-ray attenuation to proton stopping power. CT calibration curves, or Hounsfield look-up tables (HLUTs), are institution-specific and may be a source of systematic errors in treatment planning. A range probing method to verify, optimize and validate HLUTs for proton treatment is proposed. An initial HLUT was determined according to the stoichiometric approach. For HLUT validation, three types of animal tissue phantoms were prepared: a pig's head, 'thorax' and femur. CT scans of the phantoms were taken and a structure, simulating a water slab, was added on the scan distal to the phantoms to mimic the detector used for integral depth-dose measurements. The CT scans were imported into the TPS to calculate individual pencil beams directed through the phantoms. The phantoms were positioned at the therapy system isocenter using x-ray imaging. Shoot-through pencil beams were delivered, and depth-dose profiles were measured using a multi-layer ionization chamber. Measured depth-dose curves were compared to the calculated curves and the range error per spot was determined. Based on the water equivalent path length (WEPL) of individual spot, a range error margin was defined. Ratios between measured error and theoretical margin were calculated per spot. The HLUT optimization was performed by identifying systematic shifts of the mean range error per phantom and minimizing the ratios between range errors and uncertainty margins. After optimization, the ratios of the actual range error and the uncertainty margin over the complete data set did not exceed 0.75 (1.5 SD), indicating that the actual errors are covered by the theoretical uncertainty recipe. The feasibility of using range probing to assess range errors was demonstrated. The theoretical uncertainty margins in the institution-specific setting potentially may be reduced by ~25%.


Asunto(s)
Algoritmos , Cabeza/diagnóstico por imagen , Fantasmas de Imagen , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Calibración , Terapia de Protones/instrumentación , Dosificación Radioterapéutica , Porcinos
5.
Med Phys ; 46(3): 1140-1149, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30609061

RESUMEN

BACKGROUND AND PURPOSE: Motion-induced uncertainties hamper the clinical implementation of pencil beam scanning proton therapy (PBS-PT). Prospective pretreatment evaluations only provide multiscenario predictions without giving a clear conclusion for the actual treatment. Therefore, in this proof-of-concept study we present a methodology for a fraction-wise retrospective four-dimensional (4D) dose reconstruction and accumulation aiming at the evaluation of treatment quality during and after treatment. MATERIAL AND METHODS: We implemented an easy-to-use, script-based 4D dose assessment of PBS-PT for patients with moving tumors in a commercially available treatment planning system. This 4D dose accumulation uses treatment delivery log files and breathing pattern records of each fraction as well as weekly repeated 4D-CT scans acquired during the treatment course. The approach was validated experimentally and was executed for an exemplary dataset of a lung cancer patient. RESULTS: The script-based 4D dose reconstruction and accumulation was implemented successfully, requiring minimal user input and a reasonable processing time (around 10 min for a fraction dose assessment). An experimental validation using a dynamic CIRS thorax phantom confirmed the precision of the 4D dose reconstruction methodology. In a proof-of-concept study, the accumulation of 33 reconstructed fraction doses showed a linear increase of D98 values. Projected treatment course D98 values revealed a CTV underdosage after fraction 25. This loss of target coverage was confirmed in a dose volume histogram comparison of the nominal, the projected (after 16 fractions) and the accumulated (after 33 fractions) dose distribution. CONCLUSIONS: The presented method allows for the assessment of the conformity between planned and delivered dose as the treatment course progresses. The implemented approach considers the influence of changing patient anatomy and variations in the breathing pattern. This facilitates treatment quality evaluation and supports decisions regarding plan adaptation. In a next step, this approach will be applied to a larger patient cohort to investigate its capability as 4D quality control and decision support tool for treatment adaptation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Tomografía Computarizada Cuatridimensional/métodos , Implementación de Plan de Salud , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Estudios de Factibilidad , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Movimiento , Pronóstico , Estudios Prospectivos , Dosificación Radioterapéutica , Estudios Retrospectivos
6.
Philos Trans A Math Phys Eng Sci ; 372(2019): 20130296, 2014 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-24891395

RESUMEN

The Southern Ocean is an important part of the global climate system, but its complex coupled nature makes both its present state and its response to projected future climate forcing difficult to model. Clear trends in wind, sea-ice extent and ocean properties emerged from multi-model intercomparison in the Coupled Model Intercomparison Project phase 3 (CMIP3). Here, we review recent analyses of the historical and projected wind, sea ice, circulation and bulk properties of the Southern Ocean in the updated Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble. Improvements to the models include higher resolutions, more complex and better-tuned parametrizations of ocean mixing, and improved biogeochemical cycles and atmospheric chemistry. CMIP5 largely reproduces the findings of CMIP3, but with smaller inter-model spreads and biases. By the end of the twenty-first century, mid-latitude wind stresses increase and shift polewards. All water masses warm, and intermediate waters freshen, while bottom waters increase in salinity. Surface mixed layers shallow, warm and freshen, whereas sea ice decreases. The upper overturning circulation intensifies, whereas bottom water formation is reduced. Significant disagreement exists between models for the response of the Antarctic Circumpolar Current strength, for reasons that are as yet unclear.

7.
Proc Natl Acad Sci U S A ; 105(33): 11634-9, 2008 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-18695241

RESUMEN

Polar regions are particularly sensitive to climate change, with the potential for significant feedbacks between ocean circulation, sea ice, and the ocean carbon cycle. However, the difficulty in obtaining in situ data means that our ability to detect and interpret change is very limited, especially in the Southern Ocean, where the ocean beneath the sea ice remains almost entirely unobserved and the rate of sea-ice formation is poorly known. Here, we show that southern elephant seals (Mirounga leonina) equipped with oceanographic sensors can measure ocean structure and water mass changes in regions and seasons rarely observed with traditional oceanographic platforms. In particular, seals provided a 30-fold increase in hydrographic profiles from the sea-ice zone, allowing the major fronts to be mapped south of 60 degrees S and sea-ice formation rates to be inferred from changes in upper ocean salinity. Sea-ice production rates peaked in early winter (April-May) during the rapid northward expansion of the pack ice and declined by a factor of 2 to 3 between May and August, in agreement with a three-dimensional coupled ocean-sea-ice model. By measuring the high-latitude ocean during winter, elephant seals fill a "blind spot" in our sampling coverage, enabling the establishment of a truly global ocean-observing system.


Asunto(s)
Hielo , Phocidae , Agua de Mar , Animales , Temperatura
9.
Dimens Health Serv ; 61(3): 18-20, 1984 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-6724179

RESUMEN

Workload measurement systems used by nursing services are based on the concept that each patient has a unique requirement for care. As a result the detailed data are provided which managers require to identify what kinds of patients use what volume of nursing manpower resources and at what cost. Because of the great diversity of systems used, modification to some will likely be required in the future to allow the data produced to be integrated with comprehensive hospital information in accordance with the MIS Guidelines under development by the project team. This team, together with an array of resource people, have developed standard definitions of categories of work and guidelines for workload measurement systems. In this manner, nursing services across the country can maintain their freedom of choice of systems, while information about the cost of patient care is improved and comparability of information between hospitals is enhanced.


Asunto(s)
Sistemas de Información , Sistemas de Información Administrativa , Servicio de Enfermería en Hospital/organización & administración , Administración de Personal/métodos , Admisión y Programación de Personal/métodos , Canadá , Humanos , Pacientes/clasificación , Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...