Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Intervalo de año de publicación
1.
Toxins (Basel) ; 16(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39195754

RESUMEN

Pineapple Fruitlet Core Rot (FCR) is a fungal disease characterized by a multi-pathogen pathosystem. Recently, Fusarium proliferatum, Fusarium oxysporum, and Talaromyces stollii joined the set of FCR pathogens until then exclusively attributed to Fusarium ananatum. The particularity of FCR relies on the presence of healthy and diseased fruitlets within the same infructescence. The mycobiomes associated with these two types of tissues suggested that disease occurrence might be triggered by or linked to an ecological chemical communication-promoting pathogen(s) development within the fungal community. Interactions between the four recently identified pathogens were deciphered by in vitro pairwise co-culture bioassays. Both fungal growth and mycotoxin production patterns were monitored for 10 days. Results evidenced that Talaromyces stollii was the main fungal antagonist of Fusarium species, reducing by 22% the growth of Fusarium proliferatum. A collapse of beauvericin content was observed when FCR pathogens were cross-challenged while fumonisin concentrations were increased by up to 7-fold. Antagonism between Fusarium species and Talaromyces stollii was supported by the diffusion of a red pigmentation and droplets of red exudate at the mycelium surface. This study revealed that secondary metabolites could shape the fungal pathogenic community of a pineapple fruitlet and contribute to virulence promoting FCR establishment.


Asunto(s)
Ananas , Fusarium , Micotoxinas , Enfermedades de las Plantas , Talaromyces , Ananas/microbiología , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Fusarium/patogenicidad , Talaromyces/crecimiento & desarrollo , Talaromyces/metabolismo , Enfermedades de las Plantas/microbiología , Micotoxinas/metabolismo , Frutas/microbiología , Técnicas de Cocultivo
2.
BMC Microbiol ; 24(1): 218, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902615

RESUMEN

BACKGROUND: Rhizosphere bacterial community and endophytes are now known to influence plant health and response to environmental stress. Very few studies have reported the diversity of endophytic bacterial communities of Vanilla planifolia and their potential roles in promoting plant growth or contributing to aromatic quality. RESULTS: In this study, the composition and diversity of the Vanilla rhizosphere bacterial community were explored by analyzing rhizosphere soil and root tissue samples as well as green pods of three accessions of Vanilla planifolia grown on different types of substrates (compost and leaf litter). In addition, the endophytic bacterial diversity of roots and green pods as well as the evolution of endophytic bacteria after the curing process of vanilla green pods were analyzed based on a metabarcoding approach. The results showed that bacterial species richness and diversity were higher in the compost. The analysis of the soil bacterial composition displayed that Halomonas, Pseudoalteromonas, Enterobacter and Bradyrhizobium were the most abundant genera. Moreover, the results indicated that the soil bacterial community structure was linked to the host plant genotype. Regarding the roots endophytic bacteria composition, the genera Halomonas, Pseudoalteromonas, Bacillus and Carboxydocella genera were present in all samples, independently from the substrate nature. Several genera including Bacillus, Bradyrhizobium, Burkholderia and Halomonas were transmitted internally from the roots to the green pods. The curing process reduced the bacterial richness and bacterial diversity associated with the green pods. Halomonas, Pseudoalteromonas, Bacillus, and Carboxydocella are the dominant genera in the pods after the curing process. CONCLUSIONS: This study provides an overview of changes of the bacterial communities dynamics especially endophytic in the roots and the green pods. It highlighted bacterial genera (Halomonas, Pseudoalteromonas, Bacillus, and Carboxydocella) potentially implicated in the formation of aroma compounds of vanilla beans.


Asunto(s)
Bacterias , Biodiversidad , Endófitos , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Vanilla , Endófitos/clasificación , Endófitos/genética , Endófitos/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Raíces de Plantas/microbiología , Vanilla/microbiología , ARN Ribosómico 16S/genética , Filogenia , Microbiota/genética , ADN Bacteriano/genética
3.
Immunopharmacol Immunotoxicol ; 46(2): 199-211, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38151925

RESUMEN

CONTEXT: Aflatoxins are the most harmful mycotoxins that cause human and animal health concerns. Aflatoxin M1 (AFM1) is the primary hydroxylated metabolite of aflatoxin B1 and is linked to the development of hepatocellular carcinoma and immunotoxicity in humans and animals. Because of the important role of dairy products in human life, especially children, AFM1 is such a major concern to humans because of its frequent occurrence in dairy products at concentrations high enough to cause adverse effects to human and animal health. Reduced its bioavailability becomes a high priority in order to protect human and animal health. OBJECTIVES: This study aimed to investigate, in vivo, the ability of lactic acid bacteria (lactobacillus rhamnosus GAF01, LR) and clay mineral (bentonite, BT) mixture to mitigate/reduce AFM1-induced immunotoxicity, hepatotoxicity, nephrotoxicity and oxidative stress in exposed Balb/c mice. MATERIALS AND METHODS: The in vivo study was conducted using male Balb/c mice that treated, orally, by AFM1 alone or in combination with LR and/or BT, daily for 10 days as follows: group 1 control received 200 µl of PBS, group 2 treated with LR alone (2.108 CFU/mL), group 3 treated with BT alone (1 g/kg bw), group 4 treated with AFM1 alone (100 µg/kg), group 5 co-treated with LR + AFM1, group 6 co-treated with BT + AFM1, group 7 co-treated with BT + LR + AFM1. Forty-eight h after the end of the treatment, the mice were sacrificed and the blood, spleen, thymus, liver and kidney were collected. The blood was used for biochemical and immunological study. Spleen and thymus samples were used to thymocytes and splenocytes assessments. Liver and kidney samples were the target for evaluation of oxidative stress enzymes status and for histological assays. RESULTS: The results showed that AFM1 caused toxicities in male Blab/c mice at different levels. Treatment with AFM1 resulted in severe stress of liver and kidney organs indicated by a significant change in the biochemical and immunological parameters, histopathology as well as a disorder in the profile of oxidative stress enzymes levels. Also, it was demonstrated that AFM1 caused toxicities in thymus and spleen organs. The co-treatment with LR and/or BT significantly improved the hepatic and renal tissues, regulated antioxidant enzyme activities, spleen and thymus viability and biochemical and immunological parameters. LR and BT alone showed to be safe during the treatment. CONCLUSION: In summary, the LR and/or BT was able to reduce the biochemical, histopathological and immunological damages induced by AFM1 and indeed it could be exploited as one of the biological strategies for food and feedstuffs detoxification.


Asunto(s)
Lactobacillales , Humanos , Niño , Masculino , Ratones , Animales , Lactobacillales/metabolismo , Arcilla , Ratones Endogámicos BALB C , Aflatoxina M1/toxicidad , Aflatoxina M1/metabolismo , Aflatoxina B1/toxicidad , Minerales/toxicidad , Contaminación de Alimentos
4.
Microorganisms ; 11(7)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37512926

RESUMEN

In this study, 58 endophytic bacterial strains were isolated from pods of two hybrid vanilla plants from Madagascar, Manitra ampotony and Tsy taitra. They were genetically characterized and divided into four distinct phylotypes. Three were associated to genus Bacillus species, and the fourth to the genus Curtobacterium. A selection of twelve strains corresponding to the identified genetic diversity were tested in vitro for four phytobeneficial capacities: phosphate solubilisation, free nitrogen fixation, and phytohormone and siderophore production. They were also evaluated in vitro for their ability to biocontrol the growth of the vanilla pathogenic fungi, Fusarium oxysporum f. sp. radicis vanillae and Cholletotrichum orchidophilum. Three bacteria of phylotype 4, m62a, m64 and m65, showed a high nitrogen fixation capacity in vitro, similar to the Pseudomonas florescens F113 bacterium used as a control (phospate solubilizing efficiency respectively 0.50 ± 0.07, 0.43 ± 0.07 and 0.40 ± 0.06 against 0.48 ± 0.03). Strain t2 related to B. subtilis showed a higher siderophore production than F113 (respectively 1.40 ± 0.1 AU and 1.2 ± 0.1 AU). The strain m72, associated with phylotype 2, showed the highest rate of production of Indole-3-acetic acid (IAA) in vitro. Bacteria belonging to the pylotype 4 showed the best capacity to inhibit fungal growth, especially the strains m62b m64 and t24, which also induced a significant zone of inhibition, suggesting that they may be good candidates for controlling fungal diseases of vanilla. This competence was highlighted with spectral imaging showing the production of lipopeptides (Iturin A2 and A3, C16 and C15-Fengycin A and C14 and C15-Surfactin) by the bacterial strains m65 confronted with the pathogenic fungi of vanilla.

5.
Food Addit Contam Part B Surveill ; 16(3): 274-287, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37387604

RESUMEN

Twenty two mycotoxins in 136 durum wheat collected from Tunisia in 2020 and 2021 were investigated. Mycotoxins were analyzed by UHPLCMS/MS. In 2020, 60.9% of the samples were contaminated with Aflatoxin B1 (AFB1) and/or enniatin. Whereas, in 2021, 34.4% were contaminated by enniatins. AFB1 was detected only in 2020, in the continental region (6/46) and all samples exceeded limits. AFB1 was detected in stored wheat (24-37.8 µg/kg) but also in pre-stored wheat (17-28.4 µg/kg) and in one sample collected in the field (21 µg/kg). Enniatin A1, enniatin B and enniatin B1 were detected in wheat collected in the field (30-7684 µg/kg), pre-storage (42-1266 µg/kg) and storage (65.8-498.2 µg/kg) from the continental region also, in sample collected in pre-storage (31.3-1410 µg/kg) and at harvest (48- 1060 µg/kg). Samples had a water activity less than 0.7 and moisture content ranged between 09-14%. AFB1 level represent a health risk to the Tunisian consumers.


Asunto(s)
Micotoxinas , Micotoxinas/análisis , Triticum , Túnez , Contaminación de Alimentos/análisis , Aflatoxina B1
6.
Crit Rev Toxicol ; 53(2): 117-130, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-37278984

RESUMEN

Mycotoxins, which are natural toxic compounds produced by filamentous fungi, are considered major contaminants in the food and feed chain due to their stability during processing. Their impacts in food and feedstuff pollution were accentuated due the climate change in the region. They are characterized by their toxicological effects on human and animal health but also by their harmful economic impact. Mediterranean countries: Algeria, Egypt, Libya, Morocco and Tunisia are characterized by high temperatures and high relative humidity, particularly in littoral regions that provide favorable conditions for fungal growth and toxinogenesis. Many scientific papers have been published recently in these countries showing mycotoxin occurrence in different commodities and an attempt at bio-detoxification using many bio-products. In order to minimize the bioavailability and/or to detoxify mycotoxins into less toxic metabolites (bio-transforming agents), safe and biological methods have been developed including the use of lactic acid bacteria, yeasts, plant extracts and clays minerals from Mediterranean regions. The aim of this review is to present the pollution of mycotoxins in food and feedstuff of humans and animals and to discuss the development of effective biological control for mycotoxin removal/detoxification and prevention using bio-products. This review will also elucidate the new used natural products to be considered as a new candidates for mycotoxins detoxification/prevention on animal feedstuffs.


Asunto(s)
Micotoxinas , Animales , Humanos , Micotoxinas/toxicidad , Contaminación de Alimentos/prevención & control , Alimentación Animal , Contaminación Ambiental
7.
Plant Physiol Biochem ; 194: 627-637, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36535102

RESUMEN

Species of the genus Coffea accumulate diterpenes of the ent-kaurane family in the endosperm of their seeds, of which cafestol and kahweol are the most abundant. The diterpenes are mainly stored in esterified form with fatty acids, mostly palmitate. In contrast to the numerous studies on their effects on human health and therapeutic applications, nothing was previously known about their biological and ecological role in planta. The antifungal and anti-insect activities of cafestol and cafestol palmitate were thus investigated in this study. Cafestol significantly affected the mycelial growth of five of the six phytopathogenic fungi tested. It also greatly reduced the percentage of pupation of larvae and the pupae and adult masses of one of the two fruit flies tested. By contrast, cafestol palmitate had no significant effect against any of the fungi and insects studied. Using confocal imaging and oil body isolation and analysis, we showed that diterpenes are localized in endosperm oil bodies, suggesting that esterification with fatty acids enables the accumulation of large amounts of diterpenes in a non-toxic form. Diterpene measurements in all organs of seedlings recovered from whole seed germination or embryos isolated from the endosperm showed that diterpenes are transferred from the endosperm to the cotyledons during seedling growth and then distributed to all organs, including the hypocotyl and the root. Collectively, our findings show that coffee diterpenes are broad-spectrum defence compounds that protect not only the seed on the mother plant and in the soil, but also the seedling after germination.


Asunto(s)
Coffea , Diterpenos , Humanos , Café , Plantones/química , Antifúngicos/farmacología , Endospermo/química , Germinación , Diterpenos/farmacología , Semillas/química , Ácidos Grasos
8.
Food Microbiol ; 108: 104095, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36088111

RESUMEN

Processing, such as fresh cutting and drying, is essential to enhance profitability; therefore, to limit waste and reduce losses in fruit production such as mangoes. Metabarcoding and microbial enumeration methods were utilized to explore the structure of mango microbiota, as well as their evolution after processing. Two mango ripening stages of cv. Cogshall were selected and processed into fresh-cut pieces or dried slices. Microbiological and physicochemical parameters were monitored during product storage, in order to assess the dynamics of quantitative and qualitative variations of the microbial flora. Proteobacteria was the dominant bacterial phylum of the mango surface and accounted for 73.16%, followed by Actinobacteria (10.16%), Bacteroidetes (7.82%) and Firmicutes (6.68%). Aureobasidium and Cladosporium were the only two genera shared between all types of samples (peel surface, dried slices and mango fresh-cut). However, the bacterial genera Lactobacillus and Pantoea were the most abundant in fresh-cut mango after 14 days of storage. Ascomycota was the dominant fungal phylum in the mango surface and accounted for 90.76% of the total number of detected sequences, followed by Basidiomycota (9.21%). In total, 866 microbial genera were associated with mango surface (562 bacterial and 304 fungal). Among detected yeast genera, Saccharomyces, Candida and Malassezia prevailed in mango flesh and were replaced by Wickerhamomyces after 14 days of storage. Alpha and beta diversity analyzes revealed differences in fungal and bacterial communities on fruit peel, in fresh-cut, dried slices, and during conservation (fresh-cut and dried slices). Mango processing (washing, peeling, cutting and drying) reduced the richness and the microbial diversity (bacterial and fungal) associated to the fruit, and drying limits the development of cultivable microorganisms during storage in comparison to fresh-cuts mangoes.


Asunto(s)
Mangifera , Micobioma , Bacterias/genética , Manipulación de Alimentos/métodos , Mangifera/química , Árboles
9.
J Fungi (Basel) ; 7(3)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33670857

RESUMEN

Fruitlet Core Rot (FCR) is a fungal disease that negatively impacts the quality of pineapple, in particular the 'Queen Victoria' cultivar. The main FCR causal agent has been identified as Fusariumananatum. This study focused on the correlation between FCR disease occurrence, fungal diversity, and environmental factors. FCR incidence and fungal species repartition patterns were spatially contextualized with specific surrounding parameters of the experimental plots. The mycobiome composition of healthy and diseased fruitlets was compared in order to search for potential fungal markers. A total of 240 pineapple fruits were sampled, and 344 fungal isolates were identified as belonging to 49 species among 17 genera. FCR symptom distribution revealed a significant gradient that correlated to that of the most abundant fungal species. The association of wind direction and the position of proximal cultivated crops sharing pathogens constituted an elevated risk of FCR incidence. Five highly represented species were assayed by Koch's postulates, and their pathogenicity was confirmed. These novel pathogens belonging to Fusariumfujikuroi and Talaromycespurpureogenus species complexes were identified, unravelling the complexity of the FCR pathosystem and the difficulty of apprehending the pathogenesis over the last several decades. This study revealed that FCR is an airborne disease characterized by a multi-partite pathosystem.

10.
Microorganisms ; 8(2)2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32012867

RESUMEN

Minimally-processed pineapple stored under refrigerated conditions is highly perishable. We aimed to characterize the evolution of physicochemical, sensory and microbiological quality during cold storage. Pineapple batches were sampled from several locations in Reunion Island and then minimally processed. In the processing step, the variability of firmness and counts of yeasts and molds were observed. Moreover, correlations between the sampling season and pH and b* color component, as well as between fungal population and b* parameter were observed. During storage, the visual aspect of pineapple cuts changed to brown and shiny, whereas olfactive descriptors shifted from fruity descriptors and fresh to fermented, alcoholic and milky. The values for pH, TA and TSS did not significantly vary according to storage time. A decrease in firmness and C* color parameter was observed. Yeast and mold counts were significantly higher after 7 days of storage. The diversity in yeasts and molds was mainly dependent on the considered batches observed from PCR-DGGE profiles. Fungal species were isolated from spoiled pineapple cuts. The implication of Penicilllium citrtrinum, Talaromyces amestolkiae, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, and Meyerozyma caribbica in the spoilage of minimally-processed pineapple cuts was further demonstrated.

11.
Front Microbiol ; 11: 619226, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584584

RESUMEN

The diversity of both bacterial and fungal communities associated with mango surface was explored using a metabarcoding approach targeting fungal ITS2 and bacterial 16S (V3-V4) genomic regions. Fruits were collected in Reunion Island from two different orchards according to a sampling method which allowed the effect of several pre-harvest factors such as geographical location (terroir), cultivars, fruit parts, tree position in the plot, fruit position on the tree (orientation and height), as well as the harvest date to be investigated. A total of 4,266,546 fungal and 2,049,919 bacterial reads were recovered then respectively assigned to 3,153 fungal and 24,087 to bacterial amplicon sequence variants (ASVs). Alpha and beta diversity, as well as differential abundance analyses revealed variations in both bacterial and fungal communities detected on mango surfaces depended upon the studied factor. Results indicated that Burkholderiaceae (58.8%), Enterobacteriaceae (5.2%), Pseudomonadaceae (4.8%), Sphingomonadaceae (4.1%), Beijerinckiaceae (3.5%), and Microbacteriaceae (3.1%) were the dominant bacterial families across all samples. The majority of fungal sequences were assigned to Mycosphaerellaceae (34.5%), Cladosporiaceae (23.21%), Aureobasidiaceae (13.09%), Pleosporaceae (6.92%), Trichosphaeriaceae (5.17%), and Microstromatales_fam_Incertae_sedis (4.67%). For each studied location, mango fruit from each cultivar shared a core microbiome, and fruits of the same cultivar harvested in two different locations shared about 80% fungal and bacterial family taxa. The various factors tested in this study affected bacterial and fungal taxa differently, suggesting that some taxa could act as geographical (terroir) markers and in some cases as cultivar fingerprints. The ranking of the factors investigated in the present study showed that in decreasing order of importance: the plot (terroir), cultivar, fruit parts, harvest date and the position of the fruits are respectively the most impacting factors of the microbial flora, when compared to the orientation and the fruit position (height) on the tree. Overall, these findings provided insights on both bacterial and fungal diversity associated with the mango surface, their patterns from intra-fruit scale to local scale and the potential parameters shaping the mango microbiota.

12.
Food Res Int ; 119: 477-491, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30884680

RESUMEN

Cocoa quality depends on several parameters, such as cocoa variety, environmental growth conditions, cultivation technique, and post-harvest treatments applied to coca beans. In this work, we studied the impact of cocoa post-harvest processing on both microbial communities structure and volatile composition. Cocoa beans samples were fermented in wooden boxes in Ivory Coast at different time intervals with turning and without turning, and derived from pods stored for two different duration times. Cocoa beans were analyzed using a molecular fingerprinting method (PCR-DGGE) in order to detect variations in microbial communities' structure; this global analysis was coupled to SPME-GC-MS for assessing cocoa volatile profiles. The results showed that the main parameter that influenced microbial communities structure was fermentation time, followed by turning, whereas, pods storage duration had a minor impact. Similar results were obtained for aromatic profile, except for pods storage duration that significantly affected volatile compound production. Global statistical analysis using Canonical Correspondence Analysis (CCA), showed the relationship between microbial communities and volatile composition. Furthermore, this study allowed the identification of discriminating microbial and chemical markers of cocoa post-harvest processing.


Asunto(s)
Cacao/química , Cacao/microbiología , Fermentación , Almacenamiento de Alimentos/métodos , Microbiota , Compuestos Orgánicos Volátiles/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Chocolate/análisis , Manipulación de Alimentos/métodos , Microbiología de Alimentos , Hongos/genética , Hongos/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Microbiota/genética , Factores de Tiempo
13.
J Basic Microbiol ; 59(2): 158-165, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30240041

RESUMEN

Ochratoxin A (OTA) is a nephrotoxic, teratogenic, immunotoxic, and carcinogenic mycotoxin which is produced in tropical zones mainly by Aspergillus carbonarius, A. niger, A. ochraceus, and A. westerdijkiae. A. ochraceus and A. westerdijkiae species are phenotypically and genomically very close but A. westerdijkiae produce OTA at a very higher level than A. ochraceus. These species have been differentiated recently. The DNA primer pairs which were drawn so far are not specific and a genomic region of the same size is amplified for both species or they are too specific, and in this case, the DNA of a single species is amplified. To help preventing OTA contamination of foodstuffs, the PCR-DGGE (Denaturing Gradient Gel Electrophoresis) method was used to discriminate between A. ochraceus and A. westerdijkiae DNA fragments of the same size but with different sequences and thus faster access to a diagnosis of the toxigenic potential of the fungal microflora. The proposed methodology was able to differentiate A. westerdijkiae from A. ochraceus with only one primer pairs in a single run. A calibration based on initial DNA content was obtained from image analysis of the DGGE gels and a method of quantification of the two strains was proposed.


Asunto(s)
Aspergillus ochraceus/genética , Aspergillus ochraceus/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Electroforesis en Gel de Gradiente Desnaturalizante/métodos , Ocratoxinas/biosíntesis , Reacción en Cadena de la Polimerasa/métodos , Cartilla de ADN , ADN de Hongos/análisis , Hongos/genética , Genes Fúngicos/genética , Microbiota/genética , Micotoxinas/genética , Ocratoxinas/análisis , Sensibilidad y Especificidad , Alineación de Secuencia , Análisis de Secuencia de ADN
14.
Braz. arch. biol. technol ; 60: e17160370, 2017. tab
Artículo en Inglés | LILACS | ID: biblio-839076

RESUMEN

ABSTRACT The microbial composition of different types,in ecosystems (including agro-ecosystems), has been investigated in a rapidly growing number of studies in the past few years. The importance of microorganisms, regarding the maintenance and stability of nutrients in agroecosystems, is a key to maintain the sustainability of a crop. Molecular tools to study microbial communities are possible through many methods such as RISA, DGGE, TGGE, clone libraries, T-RFLP, RAPD, SSCP and more recently NGS (Next-Generation Sequencing). DGGE is widely employed to characterize the diversity and the community dynamics of microorganisms in the environment, making possible to find out specific groups through functional genes, allowing access to data that cannot be obtained by cultural methods. The aim of this paper is to review the functional groups related to agroecosystems and to indicate the critical choice of DNA primers pairs and targeted DNA regions that may be used in PCR-based methods such as the DGGE technique in order to evaluate the microbial communities in a variety of environments.

15.
Fungal Biol ; 120(5): 745-51, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27109370

RESUMEN

The effects of light at different wavelengths and photoperiod on growth and ochratoxin A production of Aspergillus carbonarius and Aspergillus westerdijkiae were studied: far-red (740 nm), red (625 nm), blue (445 nm), and UV-A (366 nm). Fungal growth was not significantly affected by photoperiod or light wavelength; the only exception was A. westerdijkiae which showed reduced growth under UV-A light (366 nm). Short-wavelength blue light (445 nm) and UV-A light caused a reduction in ochratoxin A production of both fungal species. However, long-wavelength red light (625 nm) and far-red light (740 nm) reduced ochratoxin A production only in A. westerdijkiae but not in A. carbonarius. It is believed that this difference in reactivity to light is due to differences in the melanin content of the two fungal species: A. carbonarius is a black fungus with higher melanin content than A. westerdijkiae, a yellow fungus. Other possible explanations for the reduction of ochratoxin A production by light were also discussed.


Asunto(s)
Aspergillus/crecimiento & desarrollo , Aspergillus/efectos de la radiación , Luz , Ocratoxinas/metabolismo , Rayos Ultravioleta , Aspergillus/metabolismo
16.
Proc Natl Acad Sci U S A ; 110(27): 11157-62, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23781109

RESUMEN

Bacteria use the replication origin-to-terminus polarity of their circular chromosomes to control DNA transactions during the cell cycle. Segregation starts by active migration of the region of origin followed by progressive movement of the rest of the chromosomes. The last steps of segregation have been studied extensively in the case of dimeric sister chromosomes and when chromosome organization is impaired by mutations. In these special cases, the divisome-associated DNA translocase FtsK is required. FtsK pumps chromosomes toward the dif chromosome dimer resolution site using polarity of the FtsK-orienting polar sequence (KOPS) DNA motifs. Assays based on monitoring dif recombination have suggested that FtsK acts only in these special cases and does not act on monomeric chromosomes. Using a two-color system to visualize pairs of chromosome loci in living cells, we show that the spatial resolution of sister loci is accurately ordered from the point of origin to the dif site. Furthermore, ordered segregation in a region ∼200 kb long surrounding dif depended on the oriented translocation activity of FtsK but not on the formation of dimers or their resolution. FtsK-mediated segregation required the MatP protein, which delays segregation of the dif-surrounding region until cell division. We conclude that FtsK segregates the terminus region of sister chromosomes whether they are monomeric or dimeric and does so in an accurate and ordered manner. Our data are consistent with a model in which FtsK acts to release the MatP-mediated cohesion and/or interaction with the division apparatus of the terminus region in a KOPS-oriented manner.


Asunto(s)
Segregación Cromosómica/fisiología , Cromosomas Bacterianos/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/fisiología , Proteínas de la Membrana/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/fisiología , Segregación Cromosómica/genética , Cromosomas Bacterianos/fisiología , Proteínas de Escherichia coli/fisiología , Genes Bacterianos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/fisiología , Modelos Biológicos , Mutación , Origen de Réplica
17.
PLoS One ; 6(7): e22164, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21799784

RESUMEN

BACKGROUND: The FtsK DNA-translocase controls the last steps of chromosome segregation in E. coli. It translocates sister chromosomes using the KOPS DNA motifs to orient its activity, and controls the resolution of dimeric forms of sister chromosomes by XerCD-mediated recombination at the dif site and their decatenation by TopoIV. METHODOLOGY: We have used XerCD/dif recombination as a genetic trap to probe the interaction of FtsK with loci located in different regions of the chromosome. This assay revealed that the activity of FtsK is restricted to a ∼400 kb terminal region of the chromosome around the natural position of the dif site. Preferential interaction with this region required the tethering of FtsK to the division septum via its N-terminal domain as well as its translocation activity. However, the KOPS-recognition activity of FtsK was not required. Displacement of replication termination outside the FtsK high activity region had no effect on FtsK activity and deletion of a part of this region was not compensated by its extension to neighbouring regions. By observing the fate of fluorescent-tagged loci of the ter region, we found that segregation of the FtsK high activity region is delayed compared to that of its adjacent regions. SIGNIFICANCE: Our results show that a restricted terminal region of the chromosome is specifically dedicated to the last steps of chromosome segregation and to their coupling with cell division by FtsK.


Asunto(s)
Segregación Cromosómica , Cromosomas Bacterianos/genética , Escherichia coli K12/citología , Escherichia coli K12/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Motivos de Nucleótidos , Estructura Terciaria de Proteína , Eliminación de Secuencia
18.
BMC Microbiol ; 11(1): 28, 2011 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-21288323

RESUMEN

BACKGROUND: Bacterial chromosomes are organised into a compact and dynamic structures termed nucleoids. Cytological studies in model rod-shaped bacteria show that the different regions of the chromosome display distinct and specific sub-cellular positioning and choreographies during the course of the cell cycle. The localisation of chromosome loci along the length of the cell has been described. However, positioning of loci across the width of the cell has not been determined. RESULTS: Here, we show that it is possible to assess the mean positioning of chromosomal loci across the width of the cell using two-dimension images from wide-field fluorescence microscopy. Observed apparent distributions of fluorescent-tagged loci of the E. coli chromosome along the cell diameter were compared with simulated distributions calculated using a range of cell width positioning models. Using this method, we detected the migration of chromosome loci towards the cell periphery induced by production of the bacteriophage T4 Ndd protein. In the absence of Ndd production, loci outside the replication terminus were located either randomly along the nucleoid width or towards the cell centre whereas loci inside the replication terminus were located at the periphery of the nucleoid in contrast to other loci. CONCLUSIONS: Our approach allows to reliably observing the positioning of chromosome loci along the width of E. coli cells. The terminal region of the chromosome is preferentially located at the periphery of the nucleoid consistent with its specific roles in chromosome organisation and dynamics.


Asunto(s)
Cromosomas Bacterianos/genética , Escherichia coli/genética , Escherichia coli/citología , Microscopía Fluorescente
19.
EMBO J ; 26(19): 4239-51, 2007 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-17853894

RESUMEN

In bacteria, several salvage responses to DNA replication arrest culminate in reassembly of the replisome on inactivated forks to resume replication. The PriA DNA helicase is a prominent trigger of this replication restart process, preceded in many cases by a repair and/or remodeling of the arrested fork, which can be performed by many specific proteins. The mechanisms that target these rescue effectors to damaged forks in the cell are unknown. We report that the single-stranded DNA binding (SSB) protein is the key factor that links PriA to active chromosomal replication forks in vivo. This targeting mechanism determines the efficiency by which PriA reaches its specific DNA-binding site in vitro and directs replication restart in vivo. The RecG and RecQ DNA helicases, which are involved in intricate replication reactivation pathways, also associate with the chromosomal replication forks by similarly interacting with SSB. These results identify SSB as a platform for linking a 'repair toolbox' with active replication forks, providing a first line of rescue responses to accidental arrest.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/metabolismo , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , RecQ Helicasas/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Cromosomas Bacterianos/genética , Reparación del ADN/fisiología , Proteínas de Unión al ADN/genética , RecQ Helicasas/genética
20.
Proteomics ; 6(7): 2135-46, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16479537

RESUMEN

Construction and microscopic imaging of protein fusions to green fluorescent protein (GFP) have revolutionised our understanding of bacterial structure and function. We have undertaken a systematic study of the localisation of over 100 Bacillus subtilis proteins, following the development of high-throughput construction and analysis procedures. We focused on proteins linked in various ways to the DNA replication machinery, as well as on proteins exemplifying a range of other cellular functions and structures. The results validate the approach as a way of obtaining systematic protein localisation information. They also provide a range of novel biological insights, particularly through the identification of a number of proteins not previously known to be associated with the DNA replication factory.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Replicación del ADN , ADN Bacteriano/biosíntesis , Proteínas Fluorescentes Verdes/genética , Proteómica/métodos , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Membrana Celular/genética , Membrana Celular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Microscopía de Contraste de Fase , Sistemas de Lectura Abierta/genética , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/fisiología , Mapeo de Interacción de Proteínas/métodos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/fisiología , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA