Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 12: 754698, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34887842

RESUMEN

Microbial communities in incipient soil systems serve as the only biotic force shaping landscape evolution. However, the underlying ecological forces shaping microbial community structure and function are inadequately understood. We used amplicon sequencing to determine microbial taxonomic assembly and metagenome sequencing to evaluate microbial functional assembly in incipient basaltic soil subjected to precipitation. Community composition was stratified with soil depth in the pre-precipitation samples, with surficial communities maintaining their distinct structure and diversity after precipitation, while the deeper soil samples appeared to become more uniform. The structural community assembly remained deterministic in pre- and post-precipitation periods, with homogenous selection being dominant. Metagenome analysis revealed that carbon and nitrogen functional potential was assembled stochastically. Sub-populations putatively involved in the nitrogen cycle and carbon fixation experienced counteracting assembly pressures at the deepest depths, suggesting the communities may functionally assemble to respond to short-term environmental fluctuations and impact the landscape-scale response to perturbations. We propose that contrasting assembly forces impact microbial structure and potential function in an incipient landscape; in situ landscape characteristics (here homogenous parent material) drive community structure assembly, while short-term environmental fluctuations (here precipitation) shape environmental variations that are random in the soil depth profile and drive stochastic sub-population functional dynamics.

2.
J Vis Exp ; (115)2016 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-27684738

RESUMEN

Studying co-evolution of hydrological and biogeochemical processes in the subsurface of natural landscapes can enhance the understanding of coupled Earth-system processes. Such knowledge is imperative in improving predictions of hydro-biogeochemical cycles, especially under climate change scenarios. We present an experimental method, designed to capture sub-surface heterogeneity of an initially homogeneous soil system. This method is based on destructive sampling of a soil lysimeter designed to simulate a small-scale hillslope. A weighing lysimeter of one cubic meter capacity was divided into sections (voxels) and was excavated layer-by-layer, with sub samples being collected from each voxel. The excavation procedure was aimed at detecting the incipient heterogeneity of the system by focusing on the spatial assessment of hydrological, geochemical, and microbiological properties of the soil. Representative results of a few physicochemical variables tested show the development of heterogeneity. Additional work to test interactions between hydrological, geochemical, and microbiological signatures is planned to interpret the observed patterns. Our study also demonstrates the possibility of carrying out similar excavations in order to observe and quantify different aspects of soil-development under varying environmental conditions and scale.


Asunto(s)
Hidrología/métodos , Microbiología del Suelo , Suelo/química , Cambio Climático , Contaminantes del Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...