Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 286(28): 25039-46, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21550981

RESUMEN

Retrograde vesicular transport from the Golgi to the ER requires the Dsl1 tethering complex, which consists of the three subunits Dsl1, Dsl3, and Tip20. It forms a stable complex with the SNAREs Ufe1, Use1, and Sec20 to mediate fusion of COPI vesicles with the endoplasmic reticulum. Here, we analyze molecular interactions between five SNAREs of the ER (Ufe1, Use1, Sec20, Sec22, and Ykt6) and the Dsl1 complex in vitro and in vivo. Of the two R-SNAREs, Sec22 is preferred over Ykt6 in the Dsl-SNARE complex. The NSF homolog Sec18 can displace Ykt6 but not Sec22, suggesting a regulatory function for Ykt6. In addition, our data also reveal that subunits of the Dsl1 complex (Dsl1, Dsl3, and Tip20), as well as the SNAREs Ufe1 and Sec20, are ER-resident proteins that do not seem to move into COPII vesicles. Our data support a model, in which a tethering complex is stabilized at the organelle membrane by binding to SNAREs, recognizes the incoming vesicle via its coat and then promotes its SNARE-mediated fusion.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Fusión de Membrana/fisiología , Complejos Multiproteicos/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Retículo Endoplásmico/genética , Modelos Biológicos , Complejos Multiproteicos/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas SNARE/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética
2.
Traffic ; 9(9): 1510-21, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18541004

RESUMEN

The dually lipidated SNARE Ykt6 is found on intracellular membranes and in the cytosol. In this study, we show that Ykt6 localizes to the Golgi as well as endosomal and vacuolar membranes in vivo. The ability of Ykt6 to cycle between the cytosol and the membranes depends on the intramolecular interaction of the N-terminal longin and C-terminal SNARE domains and not on either domain alone. A mutant deficient in this interaction accumulates on membranes and--in contrast to the wild-type protein--does not get released from vacuoles. Our data also indicate that Ykt6 is a substrate of the DHHC (Asp-His-His-Cys) acyltransferase network. Overexpression of the vacuolar acyltransferase Pfa3 drives the F42S mutant not only to the vacuole but also into the vacuolar lumen. Thus, depalmitoylation and release of Ykt6 are needed for its recycling and to circumvent its entry into the endosomal multivesicular body pathway.


Asunto(s)
Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Lipoilación , Proteínas R-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Aciltransferasas/metabolismo , Citosol/metabolismo , Electroforesis en Gel de Poliacrilamida , Aparato de Golgi/metabolismo , Fusión de Membrana , Mutación Puntual , Transporte de Proteínas , Proteínas R-SNARE/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Vacuolas/metabolismo
3.
Autophagy ; 4(1): 5-19, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17932463

RESUMEN

Vesicular transport in eukaryotic cells is concluded with the consumption of the vesicle at the target membrane. This fusion process relies on Rabs, tethers and SNAREs. Powerful in vitro fusion systems using isolated organelles were crucial to obtain insights into the underlying mechanism of membrane fusion- from the initiation of fusion to lipid bilayer mixing. Among these systems, yeast vacuoles turned out to be particularly useful as they can be manipulated biochemically and genetically. Studies relying on this organelle have revealed insights into the connection of vacuole fusion to endomembrane biogenesis. A number of fusion factors were identified and characterized over the last several years, and placed into the fusion cascade. Within this review, we will present and discuss the current state of our knowledge on vacuole fusion.


Asunto(s)
Membranas Intracelulares/metabolismo , Fusión de Membrana/fisiología , Saccharomyces cerevisiae/citología , Vacuolas/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Red trans-Golgi/metabolismo
4.
Methods ; 40(2): 171-6, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17012029

RESUMEN

A protein's function depends on its localization to the right cellular compartment. A number of proteins require lipidation to associate with membranes. Protein palmitoylation is a reversible lipid modification and has been shown to mediate both membrane localization and control protein function. At the yeast vacuole, several palmitoylated proteins have been identified that are required for vacuole biogenesis, including the fusion factor Vac8, the SNARE Ykt6 and the casein kinase Yck3. Moreover, both the DHHC-CRD acyltransferase Pfa3 and Ykt6 are involved in palmitoylation at the vacuole Here, we present and discuss methods to probe for protein palmitoylation at vacuoles.


Asunto(s)
Ácido Palmítico/metabolismo , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Acilación , Aciltransferasas/fisiología
5.
J Cell Sci ; 119(Pt 12): 2477-85, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16720644

RESUMEN

Palmitoylation stably anchors specific proteins to membranes, but may also have a direct effect on the function of a protein. The yeast protein Vac8 is required for efficient vacuole fusion, inheritance and cytosol-to-vacuole trafficking. It is anchored to vacuoles by an N-terminal myristoylation site and three palmitoylation sites, also known as the SH4 domain. Here, we address the role of Vac8 palmitoylation and show that the position and number of substrate cysteines within the SH4 domain determine the vacuole localization of Vac8: stable vacuole binding of Vac8 requires two cysteines within the N-terminus, regardless of the combination. Importantly, our data suggest that palmitoylation adds functionality to Vac8 beyond simple localization. A mutant Vac8 protein, in which the palmitoylation sites were replaced by a stretch of basic residues, still localizes to vacuole membranes and functions in cytosol-to-vacuole transport, but can only complement the function of Vac8 in morphology and inheritance if it also contains a single cysteine within the SH4 domain. Our data suggest that palmitoylation is not a mere hydrophobic anchor required solely for localization, but influences the protein function(s).


Asunto(s)
Lipoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Ácido Palmítico/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/fisiología , Membrana Celular/metabolismo , Cisteína/metabolismo , Mutación , Proteínas de Transporte Vesicular , Dominios Homologos src/genética , Dominios Homologos src/fisiología
6.
J Biol Chem ; 280(15): 15348-55, 2005 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15701652

RESUMEN

Yeast vacuole fusion requires palmitoylated Vac8. We previously showed that Vac8 acylation occurs early in the fusion reaction, is blocked by antibodies against Sec18 (yeast N-ethylmaleimide-sensitive fusion protein (NSF)), and is mediated by the R-SNARE Ykt6. Here we analyzed the regulation of this reaction on purified vacuoles. We show that Vac8 acylation is restricted to a narrow time window, is independent of ATP hydrolysis by Sec18, and is stimulated by the ion chelator EDTA. Analysis of vacuole protein complexes indicated that Ykt6 is part of a complex distinct from the second R-SNARE, Nyv1. We speculate that during vacuole fusion, Nyv1 is the classical R-SNARE, whereas the Ykt6-containing complex has a novel function in Vac8 palmitoylation.


Asunto(s)
Adenosina Trifosfato/metabolismo , Lipoproteínas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/química , Relación Dosis-Respuesta a Droga , Ácido Edético/química , Electroforesis en Gel de Poliacrilamida , Genotipo , Glutatión Transferasa/metabolismo , Hidrólisis , Inmunoprecipitación , Proteínas de la Membrana/química , Proteínas de la Membrana/fisiología , Microscopía de Contraste de Fase , Modelos Biológicos , Ácido Palmítico/metabolismo , Unión Proteica , Proteínas R-SNARE , Proteínas Recombinantes/química , Proteínas SNARE , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología , Factores de Tiempo , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA