Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Hyg Environ Health ; 259: 114360, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38555823

RESUMEN

Occupational exposure to pathogens can pose health risks. This study investigates the viral exposure of workers in a wastewater treatment plant (WWTP) and a swine farm by analyzing aerosol and surfaces samples. Viral contamination was evaluated using quantitative polymerase chain reaction (qPCR) assays, and target enrichment sequencing (TES) was performed to identify the vertebrate viruses to which workers might be exposed. Additionally, Quantitative Microbial Risk Assessment (QMRA) was conducted to estimate the occupational risk associated with viral exposure for WWTP workers, choosing Human Adenovirus (HAdV) as the reference pathogen. In the swine farm, QMRA was performed as an extrapolation, considering a hypothetical zoonotic virus with characteristics similar to Porcine Adenovirus (PAdV). The modelled exposure routes included aerosol inhalation and oral ingestion through contaminated surfaces and hand-to-mouth contact. HAdV and PAdV were widespread viruses in the WWTP and the swine farm, respectively, by qPCR assays. TES identified human and other vertebrate viruses WWTP samples, including viruses from families such as Adenoviridae, Circoviridae, Orthoherpesviridae, Papillomaviridae, and Parvoviridae. In the swine farm, most of the identified vertebrate viruses were porcine viruses belonging to Adenoviridae, Astroviridae, Circoviridae, Herpesviridae, Papillomaviridae, Parvoviridae, Picornaviridae, and Retroviridae. QMRA analysis revealed noteworthy risks of viral infections for WWTP workers if safety measures are not taken. The probability of illness due to HAdV inhalation was higher in summer compared to winter, while the greatest risk from oral ingestion was observed in workspaces during winter. Swine farm QMRA simulation suggested a potential occupational risk in the case of exposure to a hypothetical zoonotic virus. This study provides valuable insights into WWTP and swine farm worker's occupational exposure to human and other vertebrate viruses. QMRA and NGS analyses conducted in this study will assist managers in making evidence-based decisions, facilitating the implementation of protection measures, and risk mitigation practices for workers.


Asunto(s)
Granjas , Secuenciación de Nucleótidos de Alto Rendimiento , Exposición Profesional , Aguas Residuales , Animales , Porcinos , Aguas Residuales/virología , Humanos , Medición de Riesgo , Virus/aislamiento & purificación , Virus/genética , Monitoreo del Ambiente/métodos
2.
Hum Genomics ; 18(1): 10, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38303015

RESUMEN

BACKGROUND: Human viruses released into the environment can be detected and characterized in wastewater. The study of wastewater virome offers a consolidated perspective on the circulation of viruses within a population. Because the occurrence and severity of viral infections can vary across a person's lifetime, studying the virome in wastewater samples contributed by various demographic segments can provide valuable insights into the prevalence of viral infections within these segments. In our study, targeted enrichment sequencing was employed to characterize the human virome in wastewater at a building-level scale. This was accomplished through passive sampling of wastewater in schools, university settings, and nursing homes in two cities in Catalonia. Additionally, sewage from a large urban wastewater treatment plant was analysed to serve as a reference for examining the collective excreted human virome. RESULTS: The virome obtained from influent wastewater treatment plant samples showcased the combined viral presence from individuals of varying ages, with astroviruses and human bocaviruses being the most prevalent, followed by human adenoviruses, polyomaviruses, and papillomaviruses. Significant variations in the viral profiles were observed among the different types of buildings studied. Mamastrovirus 1 was predominant in school samples, salivirus and human polyomaviruses JC and BK in the university settings while nursing homes showed a more balanced distribution of viral families presenting papillomavirus and picornaviruses and, interestingly, some viruses linked to immunosuppression. CONCLUSIONS: This study shows the utility of building-level wastewater-based epidemiology as an effective tool for monitoring the presence of viruses circulating within specific age groups. It provides valuable insights for public health monitoring and epidemiological studies.


Asunto(s)
Virosis , Virus , Humanos , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , Viroma/genética , Virus/genética
3.
Sci Total Environ ; 872: 162116, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36773920

RESUMEN

During the last three years, various restrictions have been set up to limit the transmission of the Coronavirus Disease (COVID-19). While these rules apply at a large scale (e.g., country-wide level) human-to-human transmission of the virus that causes COVID-19, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), occurs at a small scale. Different preventive policies and testing protocols were implemented in buildings where COVID-19 poses a threat (e.g., elderly residences) or constitutes a disruptive force (e.g., schools). In this study, we sampled sewage from different buildings (a school, a university campus, a university residence, and an elderly residence) that host residents of different levels of vulnerability. Our main goal was to assess the agreement between the SARS-CoV-2 concentration in wastewater and the policies applied in these buildings. All buildings were sampled using passive samplers while 24 h composite samples were also collected from the elderly residence. Results showed that passive samplers performed comparably well to composite samples while being cost-effective to keep track of COVID-19 prevalence. In the elderly residence, the comparison of sampling protocols (passive vs. active) combined with the strict clinical testing allowed us to compare the sensitivities of the two methods. Active sampling was more sensitive than passive sampling, as the former was able to detect a COVID-19 prevalence of 0.4 %, compared to a prevalence of 2.2 % for passive sampling. The number of COVID-19-positive individuals was tracked clinically in all the monitored buildings. More frequent detection of SARS-CoV-2 in wastewater was observed in residential buildings than in non-residential buildings using passive samplers. In all buildings, sewage surveillance can be used to complement COVID-19 clinical testing regimes, as the detection of SARS-CoV-2 in wastewater remained positive even when no COVID-19-positive individuals were reported. Passive sampling is useful for building managers to adapt their COVID-19 mitigation policies.


Asunto(s)
COVID-19 , Aguas del Alcantarillado , Anciano , Humanos , Aguas Residuales , SARS-CoV-2 , Vivienda , COVID-19/epidemiología
4.
Chemosphere ; 313: 137393, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36442679

RESUMEN

Water treatment and reuse is gaining acceptance as a strategy to fight against water contamination and scarcity, but it usually requires complex treatments to ensure safety. Consequently, the electrochemical advanced processes have emerged as an effective alternative for water remediation. The main objective here is to perform a systematic study that quantifies the efficiency of a laboratory-scale electrochemical system to inactivate bacteria, bacterial spores, protozoa, bacteriophages and viruses in synthetic water, as well as in urban wastewater once treated in a wetland for reuse in irrigation. A Ti|RuO2-based plate and Si|BDD thin-film were comparatively employed as the anode, which was combined with a stainless-steel cathode in an undivided cell operating at 12 V. Despite the low resulting current density (<15 mA/cm2), both anodes demonstrated the production of oxidants in wetland effluent water. The disinfection efficiency was high for the bacteriophage MS2 (T99 in less than 7.1 min) and bacteria (T99 in about 30 min as maximum), but limited for CBV5 and TuV, spores and amoebas (T99 in more than 300 min). MS2 presented a rapid exponential inactivation regardless of the anode and bacteria showed similar sigmoidal curves, whereas human viruses, spores and amoebas resulted in linear profiles. Due the different sensitivity of microorganisms, different models must be considered to predict their inactivation kinetics. On this basis, it can be concluded that evaluating the viral inactivation from inactivation profiles determined for bacteria or some bacteriophages may be misleading. Therefore, neither bacteria nor bacteriophages are suitable models for the disinfection of water containing enteric viruses. The electrochemical treatment added as a final disinfection step enhances the inactivation of microorganisms, which could contribute to safe water reuse for irrigation. Considering the calculated low energy consumption, decentralized water treatment units powered by photovoltaic modules might be a near reality.


Asunto(s)
Desinfección , Purificación del Agua , Humanos , Desinfección/métodos , Bacterias , Oxidación-Reducción , Purificación del Agua/métodos , Oxidantes
5.
Sci Rep ; 12(1): 16704, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36202959

RESUMEN

Wastewater-based epidemiology has shown to be an efficient tool to track the circulation of SARS-CoV-2 in communities assisted by wastewater treatment plants (WWTPs). The challenge comes when this approach is employed to help Health authorities in their decision-making. Here, we describe the roadmap for the design and deployment of SARSAIGUA, the Catalan Surveillance Network of SARS-CoV-2 in Sewage. The network monitors, weekly or biweekly, 56 WWTPs evenly distributed across the territory and serving 6 M inhabitants (80% of the Catalan population). Each week, samples from 45 WWTPs are collected, analyzed, results reported to Health authorities, and finally published within less than 72 h in an online dashboard ( https://sarsaigua.icra.cat ). After 20 months of monitoring (July 20-March 22), the standardized viral load (gene copies/day) in all the WWTPs monitored fairly matched the cumulative number of COVID-19 cases along the successive pandemic waves, showing a good fit with the diagnosed cases in the served municipalities (Spearman Rho = 0.69). Here we describe the roadmap of the design and deployment of SARSAIGUA while providing several open-access tools for the management and visualization of the surveillance data.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , Pandemias , ARN Viral , Aguas del Alcantarillado , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
6.
Sci Total Environ ; 800: 149562, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34391155

RESUMEN

In the wake of the COVID-19 pandemic, the use of next generation sequencing (NGS) has proved to be an important tool for the genetic characterization of SARS-CoV-2 from clinical samples. The use of different available NGS tools applied to wastewater samples could be the key for an in-depth study of the excreted virome, not only focusing on SARS-CoV-2 circulation and typing, but also to detect other potentially pandemic viruses within the same family. With this aim, 24-hours composite wastewater samples from March and July 2020 were sequenced by applying specific viral NGS as well as target enrichment NGS. The full virome of the analyzed samples was obtained, with human Coronaviridae members (CoV) present in one of those samples after applying the enrichment. One contig was identified as HCoV-OC43 and 8 contigs as SARS-CoV-2. CoVs from other animal hosts were also detected when applying this technique. These contigs were compared with those obtained from contemporary clinical specimens by applying the same target enrichment approach. The results showed that there is a co-circulation in urban areas of human and animal coronaviruses infecting domestic animals and rodents. NGS enrichment-based protocols might be crucial to describe the occurrence and genetic characteristics of SARS-CoV-2 and other Coronaviridae family members within the excreted virome present in wastewater.


Asunto(s)
COVID-19 , Pandemias , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , SARS-CoV-2 , Aguas del Alcantarillado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...