Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124887

RESUMEN

This article presents a new method for preparing multifunctional composite biomaterials with applications in advanced biomedical fields. The biomaterials consist of dicalcium phosphate (DCPD) and bioactive silicate glasses (SiO2/Na2O and SiO2/K2O), containing the antibiotic streptomycin sulfate. Materials were deeply characterized by X-ray diffraction and attenuated total reflectance Fourier transform infrared spectroscopy, and zeta potential analysis, UV-visible spectrophotometry, and ion-exchange measurement were applied in a simulating body fluid (SBF) solution. The main results include an in situ chemical transformation of dicalcium phosphate into an apatitic phase under the influence of silicate solutions and the incorporation of the antibiotic. The zeta potential showed a decrease in surface charge from ζ = -24.6 mV to ζ = -16.5 mV. In addition, a controlled and prolonged release of antibiotics was observed over a period of 37 days, with a released concentration of up to 755 ppm. Toxicity tests in mice demonstrated good tolerance of the biomaterials, with no significant adverse effects. Moreover, these biomaterials have shown potent antibacterial activity against various bacterial strains, including Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, suggesting their potential use in tissue engineering, drug delivery, and orthopedic and dental implants. By integrating the antibiotic into the biomaterial composites, we achieved controlled release and prolonged antibacterial efficacy. This research contributes to advancing biomaterials by exploring innovative synthetic routes and showcasing their promise in regenerative medicine and controlled drug delivery.


Asunto(s)
Antibacterianos , Materiales Biocompatibles , Medicina Regenerativa , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Medicina Regenerativa/métodos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Animales , Ratones , Sistemas de Liberación de Medicamentos , Difracción de Rayos X , Pruebas de Sensibilidad Microbiana , Preparaciones de Acción Retardada/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Fosfatos de Calcio/química , Fosfatos de Calcio/síntesis química , Liberación de Fármacos , Estreptomicina/farmacología , Dióxido de Silicio/química
2.
Molecules ; 29(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39202932

RESUMEN

This study investigates, in the first part, the synthesis and purification of a poorly crystalline hydroxyapatite (HAp) using natural Moroccan phosphate (Boucraa region) as a raw material. Despite its successful preparation, the obtained HAp was contaminated by several metallic cations (mostly Cd, Pb, Sn, Ti, Mn, Mg, Fe, and Al) migrated from the natural rocks during the digestion process, inhibiting HAp application in several sectors. To minimize the existence of these elements, the dissolution-precipitation technique (DP) was investigated as a non-selective purification process. Following the initial DP cycle conducted on the precipitated HAp, the removal efficiency was approximately 60% for Al, Fe, Mg, Mn, and Ti and 90% for Cd and Pb. After three consecutive DP cycles, notable improvement in the removal efficiency was observed, reaching 66% for Fe, 69% for Mg, 73% for Mn, and 74% for Al, while Cd, Pb, and Ti were totally removed. In the second part of this study, the purified HAp was digested using sulfuric acid to produce high-quality phosphoric acid (PA) and gypsum (GP). The elemental analysis of the PA indicates a removal efficiency of approximately 89% for Fe and over 94% for all the examined cations. In addition, the generated GP was dominated by SO3 and CaO accompanied with minor impurities. Overall, this simple process proves to be practically useful, to reduce a broad spectrum of cationic impurities, and to be flexible to prepare valuable products such hydroxyapatite, phosphoric acid, and gypsum.

3.
Polymers (Basel) ; 16(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38201750

RESUMEN

This paper presents a novel cheminformatics approach for the design and synthesis of hydroxyapatite/collagen nanocomposites, which have potential biomedical applications in tissue engineering, drug delivery, and orthopedic and dental implants. The nanocomposites are synthesized by the co-precipitation method with different ratios of hydroxyapatite and collagen. Their mechanical, biological, and degradation properties are analyzed using various experimental and computational techniques. Attenuated total reflection-Fourier-transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction unveil the low crystallinity and nanoscale particle size of hydroxyapatite (22.62 nm) and hydroxyapatite/collagen composites (14.81 nm). These findings are substantiated by scanning electron microscopy with energy-dispersive X-ray spectroscopy, confirming the Ca/P ratio between 1.65 and 1.53 and attesting to the formation of non-stoichiometric apatites in all samples, further validated by molecular simulation. The antimicrobial activity of the nanocomposites is evaluated in vitro against several bacterial and fungal strains, demonstrating their medical potential. Additionally, in silico analyses are performed to predict the absorption, distribution, metabolism, and excretion properties and the bioavailability of the collagen samples. This study paves the way for the development of novel biomaterials using chemoinformatics tools and methods, facilitating the optimization of design and synthesis parameters, as well as the prediction of biological outcomes. Future research directions should encompass the investigation of in vivo biocompatibility and bioactivity of the nanocomposites, while exploring further applications and functionalities of these innovative materials.

4.
Polymers (Basel) ; 14(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36297842

RESUMEN

Water purification from toxic metals was the main objective of this work. A composite in film form was prepared from the biomaterials hydroxyapatite, chitosan and glycerol using the dissolution/recrystallization method. A nanoparticle-based film with a homogenous and smooth surface was produced. The results of total reflectance infrared spectroscopy (ATR-FTIR) and thermal gravimetric analysis (TGA/DTA) demonstrated the presence of a substantial physical force between composite components. The composite was tested for its ability to absorb Cd2+ and Zn2+ ions from aqueous solutions. Cd2+ and Zn2+ adsorption mechanisms are fit using the Langmuir model and the pseudo-second-order model. Thermodynamic parameters indicated that Cd2+ and Zn2+ ion adsorption onto the composite surface is spontaneous and preferred at neutral pH and temperatures somewhat higher than room temperature. The adsorption studies showed that the maximum adsorption capacity of the HAp/CTs bio-composite membrane for Cd2+ and Zn2+ ions was in the order of cadmium (120 mg/g) > Zinc (90 mg/g) at an equilibrium time of 20 min and a temperature of 25 °C. The results obtained on the physico-chemical properties of nanocomposite membranes and their sorption capacities offer promising potential for industrial and biological activities.

5.
Polymers (Basel) ; 14(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35683819

RESUMEN

The aim of this study is to develop a new, efficient, and inexpensive natural-based adsorbent with high efficacy for the cationic dye methylene blue (MB). A natural-based nanocomposite based on hydroxyapatite (HAp) and hydroxypropyl methylcellulose (HPMC) was selected for this purpose. It was synthesized by the dissolution/reprecipitation method. A film with a homogeneous and smooth surface composed of nanoparticles was prepared from the nanocomposite. HPMC and HAp biopolymers were selected due to their compatibility, biodegradability, and non-toxicity. Total reflectance infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and calorimetric/thermal gravimetric (DSC/TGA) analysis results revealed the existence of strong physical interaction between the composite components. Scanning electron microscopy (SEM) observations show a composite sheet with a homogenous and smooth surface, indicating excellent compatibility between HPMC and HAp in the composite. The nanocomposite was evaluated as an adsorbent for organic dyes in an aqueous solution. The effects of solution pH, initial MB concentration, composite concentration, and adsorption time on the adsorption efficiency were evaluated. The highest adsorption rate was seen as 52.0 mg of MB/g composite. The adsorption rate reached equilibrium in about 20 min. Fitting of the adsorption data to the Langmuir and Freundlich adsorption models was investigated. Results showed that the adsorption process follows the Langmuir isotherm model. The kinetic study results revealed that the adsorption process was pseudo-second-order. The herein composite is an excellent alternative for use as contemporary industrial-scale adsorbents.

6.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 2): m215-6, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-21581809

RESUMEN

The framework of the title compound, {(NH(3)CH(2)CH(2)NH(3))[CdCl(4)]}(n), is built upon layers parallel to (100) made up from corner-sharing [CdCl(6)] octa-hedra. NH(3)CH(2)CH(2)NH(3) (2+) cations are situated between the layers and are linked to the layers via an N-H⋯Cl hydrogen-bonding network. The Cd atom is located on an inversion centre and the coordination environment is described as highly distorted octa-hedral.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA