Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Faraday Discuss ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087725

RESUMEN

Strong/static electronic correlation mediates the emergence of remarkable phases of matter, and underlies the exceptional reactivity properties in transition metal-based catalysts. Modeling strongly correlated molecules and solids calls for multi-reference Ansätze, which explicitly capture the competition of energy scales characteristic of such systems. With the efficient computational screening of correlated solids in mind, the ghost Gutzwiller (gGut) Ansatz has been recently developed. This is a variational Ansatz which can be formulated as a self-consistent embedding approach, describing the system within a non-interacting, quasiparticle model, yet providing accurate spectra in both low and high energy regimes. Crucially, small fragments of the system are identified as responsible for the strong correlation, and are therefore enhanced by adding a set of auxiliary orbitals, the ghosts. These capture many-body correlations through one-body fluctuations and subsequent out-projection when computing physical observables. gGut has been shown to accurately describe multi-orbital lattice models at modest computational cost. In this work, we extend the gGut framework to strongly correlated molecules, for which it holds special promise. Indeed, despite the asymmetric embedding treatment, the quasiparticle Hamiltonian effectively describes all major sources of correlation in the molecule: strong correlation through the ghosts in the fragment, and dynamical correlation through the quasiparticle description of its environment. To adapt the gGut Ansatz for molecules, we address the fact that, unlike in the lattice model previously considered, electronic interactions in molecules are not local. Hence, we explore a hierarchy of approximations of increasing accuracy capturing interactions between fragments and environment, and within the environment, and discuss how these affect the embedding description of correlations in the whole molecule. We will compare the accuracy of the gGut model with established methods to capture strong correlation within active space formulations, and assess the realistic use of this novel approximation to the theoretical description of correlated molecular clusters.

2.
J Chem Phys ; 158(21)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37259999

RESUMEN

The many-body simulation of quantum systems is an active field of research that involves several different methods targeting various computing platforms. Many methods commonly employed, particularly coupled cluster methods, have been adapted to leverage the latest advances in modern high-performance computing. Selected configuration interaction (sCI) methods have seen extensive usage and development in recent years. However, the development of sCI methods targeting massively parallel resources has been explored only in a few research works. Here, we present a parallel, distributed memory implementation of the adaptive sampling configuration interaction approach (ASCI) for sCI. In particular, we will address the key concerns pertaining to the parallelization of the determinant search and selection, Hamiltonian formation, and the variational eigenvalue calculation for the ASCI method. Load balancing in the search step is achieved through the application of memory-efficient determinant constraints originally developed for the ASCI-PT2 method. The presented benchmarks demonstrate near optimal speedup for ASCI calculations of Cr2 (24e, 30o) with 106, 107, and 3 × 108 variational determinants on up to 16 384 CPUs. To the best of the authors' knowledge, this is the largest variational ASCI calculation to date.

3.
J Chem Theory Comput ; 18(2): 687-702, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35034448

RESUMEN

Iron-sulfur clusters comprise an important functional motif in the catalytic centers of biological systems, capable of enabling important chemical transformations at ambient conditions. This remarkable capability derives from a notoriously complex electronic structure that is characterized by a high density of states that is sensitive to geometric changes. The spectral sensitivity to subtle geometric changes has received little attention from correlated, large active space calculations, owing partly to the exceptional computational complexity for treating these large and correlated systems accurately. To provide insight into this aspect, we report the first Complete Active Space Self Consistent Field (CASSCF) calculations for different geometries of the [Fe(II/III)4S4(SMe)4]-2 clusters using two complementary, correlated solvers: spin-pure Adaptive Sampling Configuration Interaction (ASCI) and Density Matrix Renormalization Group (DMRG). We find that the previously established picture of a double-exchange driven magnetic structure, with minute energy gaps (<1 mHa) between consecutive spin states, has a weak dependence on the underlying geometry. However, the spin gap between the singlet and the spin state 2S + 1 = 19, corresponding to a maximal number of Fe-d electrons being unpaired and of parallel spin, is strongly geometry dependent, changing by a factor of 3 upon slight deformations that are still within biologically relevant parameters. The CASSCF orbital optimization procedure, using active spaces as large as 86 electrons in 52 orbitals, was found to reduce this gap compared to typical mean-field orbital approaches. Our results show the need for performing large active space calculations to unveil the challenging electronic structure of these complex catalytic centers and should serve as accurate starting points for fully correlated treatments upon inclusion of dynamical correlation outside the active space.

4.
J Chem Phys ; 155(23): 234106, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34937349

RESUMEN

Quantum computation promises to provide substantial speedups in many practical applications with a particularly exciting one being the simulation of quantum many-body systems. Adiabatic state preparation (ASP) is one way that quantum computers could recreate and simulate the ground state of a physical system. In this paper, we explore a novel approach for classically simulating the time dynamics of ASP with high accuracy and with only modest computational resources via an adaptive sampling configuration interaction scheme for truncating the Hilbert space to only the most important determinants. We verify that this truncation introduces negligible error and use this new approach to simulate ASP for sets of small molecular systems and Hubbard models. Furthermore, we examine two approaches to speeding up ASP when performed on quantum hardware: (i) using the complete active space configuration interaction (CASCI) wave function instead of the Hartree-Fock initial state and (ii) a nonlinear interpolation between the initial and target Hamiltonians. We find that starting with a CASCI wave function with a limited active space yields substantial speedups for many of the systems examined, while nonlinear interpolation does not. In additional, we observe interesting trends in the minimum gap location (based on the initial state) as well as how state preparation time can depend on certain molecular properties, such as the number of valence electrons. Importantly, we find that the required state preparation times do not show an immediate exponential wall that would preclude an efficient run of ASP on actual hardware.

5.
J Chem Phys ; 154(12): 121101, 2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33810679

RESUMEN

Photo-emission spectroscopy directly probes individual electronic states, ranging from single excitations to high-energy satellites, which simultaneously represent multiple quasiparticles (QPs) and encode information about electronic correlation. The first-principles description of the spectra requires an efficient and accurate treatment of all many-body effects. This is especially challenging for inner valence excitations where the single QP picture breaks down. Here, we provide the full valence spectra of small closed-shell molecules, exploring the independent and interacting quasiparticle regimes, computed with the fully correlated adaptive sampling configuration interaction method. We critically compare these results to calculations with the many-body perturbation theory, based on the GW and vertex corrected GWΓ approaches. The latter explicitly accounts for two-QP quantum interactions, which have often been neglected. We demonstrate that for molecular systems, the vertex correction universally improves the theoretical spectra, and it is crucial for the accurate prediction of QPs as well as capturing the rich satellite structures of high-energy excitations. GWΓ offers a unified description across all relevant energy scales. Our results suggest that the multi-QP regime corresponds to dynamical correlations, which can be described via perturbation theory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA