Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Pharm ; 20(6): 2966-2977, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37216314

RESUMEN

Coenzyme Q10 is a potent antioxidant that plays an important role in the maintenance of various biochemical pathways of the body and has a wide range of therapeutic applications. However, it has low aqueous solubility and oral bioavailability. Mesoporous silica nanoparticles (MCM-41 and SBA-15 types) exhibiting varying pore sizes and modified with phosphonate and amino groups were used to study the influence of pore structure and surface chemistry on the solubility, in vitro release profile, and intracellular ROS inhibition activity of coenzyme Q10. The particles were thoroughly characterized to confirm the morphology, size, pore profile, functionalization, and drug loading. Surface modification with phosphonate functional groups was found to have the strongest impact on the solubility enhancement of coenzyme Q10 when compared to that of pristine and amino-modified particles. Phosphonate-modified MCM-41 nanoparticles (i.e., MCM-41-PO3) induced significantly higher coenzyme Q10 solubility than the other particles studied. Furthermore, MCM-41-PO3 led to a twofold decrease in ROS generation in human chondrocyte cells (C28/I2), compared to the free drug in a DMSO/DMEM mixture. The results confirmed the significant contribution of small pore size and negative surface charge of MSNs that enable coenzyme Q10 confinement to allow enhanced drug solubility and antioxidant activity.


Asunto(s)
Antioxidantes , Nanopartículas , Humanos , Solubilidad , Antioxidantes/farmacología , Especies Reactivas de Oxígeno , Nanopartículas/química , Dióxido de Silicio/química , Porosidad , Portadores de Fármacos/química
2.
Nanoscale ; 13(40): 16909-16922, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34533167

RESUMEN

The blood brain barrier (BBB) and blood tumour barrier (BTB) remain a major roadblock for delivering therapies to treat brain cancer. Amongst brain cancers, glioblastoma (GBM) is notoriously difficult to treat due to the challenge of delivering chemotherapeutic drugs across the BBB and into the tumour microenvironment. Consequently, GBM has high rates of tumour recurrence. Currently, limited numbers of chemotherapies are available that can cross the BBB to treat GBM. Nanomedicine is an attractive solution for treating GBM as it can augment drug penetration across the BBB and into the heterogeneous tumour site. However, very few nanomedicines exist that can easily overcome both the BBB and BTB owing to difficulty in synthesizing nanoparticles that meet the small size and surface functionality restrictions. In this study, we have developed for the first-time, a room temperature protocol to synthesise ultra-small size with large pore silica nanoparticles (USLP, size ∼30 nm, pore size >7 nm) with the ability to load high concentrations of chemotherapeutic drugs and conjugate a targeting moiety to their surface. The nanoparticles were conjugated with lactoferrin (>80 kDa), whose receptors are overexpressed by both the BBB and GBM, to achieve additional active targeting. Lactoferrin conjugated USLP (USLP-Lf) were loaded with doxorubicin - a chemotherapy agent that is known to be highly effective against GBM in vitro but cannot permeate the BBB. USLP-Lf were able to selectively permeate the BBB in vitro, and were effectively taken up by glioblastoma U87 cells. When compared to the uncoated USLP-NPs, the coating with lactoferrin significantly improved penetration of USLP into U87 tumour spheroids (after 12 hours at 100 µm distance, RFU value 19.58 vs. 49.16 respectively). Moreover, this USLP-Lf based delivery platform improved the efficacy of doxorubicin-mediated apoptosis of GBM cells in both 2D and 3D models. Collectively, our new nano-platform has the potential to overcome both the BBB and BTB to treat GBM more effectively.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Barrera Hematoencefálica , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Glioblastoma/tratamiento farmacológico , Humanos , Lactoferrina , Dióxido de Silicio/uso terapéutico , Microambiente Tumoral
3.
Angew Chem Int Ed Engl ; 59(49): 22054-22062, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32705778

RESUMEN

The direct depletion of lactate accumulated in the tumor microenvironment holds promise for cancer therapy but remains challenging. Herein, we report a one-pot synthesis of openwork@ dendritic mesoporous silica nanoparticles (ODMSNs) to address this problem. ODMSNs self-assembled through a time-resolved lamellar growth mechanism feature an openworked core and a dendritic shell, both constructed by silica nanosheets of ≈3 nm. With a large pore size, high surface area and pore volume, ODMSNs exhibited a high loading capacity (>0.7 g g-1 ) of lactate oxidase (LOX) and enabled intratumoral lactate depletion by >99.9 %, leading to anti-angiogenesis, down-regulation of vascular endothelial growth factor, and increased tumor hypoxia. The latter event facilitates the activation of a co-delivered prodrug for enhancing anti-tumor and anti-metastasis efficacy. This study provides an innovative nano-delivery system and demonstrates the first example of direct lactate-depletion-enabled chemotherapy.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antraquinonas/farmacología , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Ácido Láctico/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dendrímeros/química , Sistemas de Liberación de Medicamentos , Femenino , Hipoxia/tratamiento farmacológico , Ratones , Oxigenasas de Función Mixta/metabolismo , Nanopartículas/química , Tamaño de la Partícula , Porosidad , Dióxido de Silicio/química , Propiedades de Superficie , Microambiente Tumoral/efectos de los fármacos
4.
Pharmaceutics ; 11(8)2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31430872

RESUMEN

Type 2 diabetes makes up approximately 85% of all diabetic cases and it is linked to approximately one-third of all hospitalisations. Newer therapies with long-acting biologics such as glucagon-like peptide-1 (GLP-1) analogues have been promising in managing the disease, but they cannot reverse the pathology of the disease. Additionally, their parenteral administration is often associated with high healthcare costs, risk of infections, and poor patient adherence associated with phobia of needles. Oral delivery of these compounds would significantly improve patient compliance; however, poor enzymatic stability and low permeability across the gastrointestinal tract makes this task challenging. In the present work, large pore dendritic silica nanoparticles (DSNPs) with a pore size of ~10 nm were prepared, functionalized, and optimized in order to achieve high peptide loading and improve intestinal permeation of exenatide, a GLP-1 analogue. Compared to the loading capacity of the most popular, Mobil Composition of Matter No. 41 (MCM-41) with small pores, DSNPs showed significantly high loading owing to their large and dendritic pore structure. Among the tested DSNPs, pristine and phosphonate-modified DSNPs (PDSNPs) displayed remarkable loading of 40 and 35% w/w, respectively. Furthermore, particles successfully coated with positively charged chitosan reduced the burst release of exenatide at both pH 1.2 and 6.8. Compared with free exenatide, both chitosan-coated and uncoated PDSNPs enhanced exenatide transport through the Caco-2 monolayer by 1.7 fold. Interestingly, when a triple co-culture model of intestinal permeation was used, chitosan-coated PDSNPs performed better compared to both PDSNPs and free exenatide, which corroborated our hypothesis behind using chitosan to interact with mucus and improve permeation. These results indicate the emerging role of large pore silica nanoparticles as promising platforms for oral delivery of biologics such as exenatide.

5.
Pharmaceutics ; 10(4)2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30562958

RESUMEN

Suberoylanilide hydroxamic acid (SAHA) or vorinostat (VOR) is a potent inhibitor of class I histone deacetylases (HDACs) that is approved for the treatment of cutaneous T-cell lymphoma. However, it has the intrinsic limitations of low water solubility and low permeability which reduces its clinical potential especially when given orally. Packaging of drugs within ordered mesoporous silica nanoparticles (MSNs) is an emerging strategy for increasing drug solubility and permeability of BCS (Biopharmaceutical Classification System) class II and IV drugs. In this study, we encapsulated vorinostat within MSNs modified with different functional groups, and assessed its solubility, permeability and anti-cancer efficacy in vitro. Compared to free drug, the solubility of vorinostat was enhanced 2.6-fold upon encapsulation in pristine MSNs (MCM-41-VOR). Solubility was further enhanced when MSNs were modified with silanes having amino (3.9 fold) or phosphonate (4.3 fold) terminal functional groups. Moreover, permeability of vorinostat into Caco-2 human colon cancer cells was significantly enhanced for MSN-based formulations, particularly MSNs modified with amino functional group (MCM-41-NH2-VOR) where it was enhanced ~4 fold. Compared to free drug, vorinostat encapsulated within amino-modified MSNs robustly induced histone hyperacetylation and expression of established histone deacetylase inhibitor (HDACi)-target genes, and induced extensive apoptosis in HCT116 colon cancer cells. Similar effects were observed on apoptosis induction in HH cutaneous T-cell lymphoma cells. Thus, encapsulation of the BCS class IV molecule vorinostat within MSNs represents an effective strategy for improving its solubility, permeability and anti-tumour activity.

6.
J Am Chem Soc ; 139(18): 6321-6328, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28440642

RESUMEN

Asymmetric mesoporous silica nanoparticles (MSNs) with controllable head-tail structures have been successfully synthesized. The head particle type is tunable (solid or porous), and the tail has dendritic large pores. The tail length and tail coverage on head particles are adjustable. Compared to spherical silica nanoparticles with a solid structure (Stöber spheres) or large-pore symmetrical MSNs with fully covered tails, asymmetrical head-tail MSNs (HTMSNs) show superior hemocompatibility due to reduced membrane deformation of red blood cells and decreased level of reactive oxygen species. Moreover, compared to Stöber spheres, asymmetrical HTMSNs exhibit a higher level of uptake and in vitro maturation of immune cells including dendritic cells and macrophage. This study has provided a new family of nanocarriers with potential applications in vaccine development and immunotherapy.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Nanopartículas/química , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Portadores de Fármacos/química , Humanos , Macrófagos/inmunología , Estructura Molecular , Tamaño de la Partícula , Porosidad , Dióxido de Silicio/síntesis química , Propiedades de Superficie
7.
Nanotechnology ; 27(50): 505605, 2016 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-27875331

RESUMEN

In the present work, a simple method was used to develop composite curcumin-amine functionalized mesoporous silica nanoparticles (MSN). The nanoparticles were used to improve the bioavailability of curcumin in mice through oral administration. We investigated the effect of particle size on the release profile, solubility and oral bioavailability of curcumin in mice, including amine functionalized mesoporous silica micron-sized-particles (MSM) and MSN (100-200 nm). Curcumin loaded within amine functionalized MSN (MSN-A-Cur) had a better release profile and a higher solubility compared to amine MSM (MSM-A-Cur). The bioavailability of MSN-A-Cur and MSM-A-Cur was considerably higher than that of 'free curcumin'. These results indicate promising features of amine functionalized MSN as a carrier to deliver low solubility drugs with improved bioavailability via the oral route.


Asunto(s)
Aminas/química , Curcumina/farmacocinética , Administración Oral , Animales , Disponibilidad Biológica , Portadores de Fármacos , Ratones , Nanopartículas , Tamaño de la Partícula , Porosidad , Dióxido de Silicio
8.
ACS Appl Mater Interfaces ; 8(38): 25306-12, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27600107

RESUMEN

Arsenic contamination in natural water has posed a significant threat to global health due to its toxicity and carcinogenity. Adsorption technology is an easy and flexible method for arsenic removal with high efficiency. In this Article, we demonstrated the synthesis of mesoporous MgO hollow spheres (MgO-HS) and their application as high performance arsenite (As(III)) adsorbent. MgO-HS with uniform particle size (∼180 nm), high specific surface area (175 m(2) g(-1)), and distinguished mesopores (9.5 nm in size) have been prepared by hard-templating approach using mesoporous hollow carbon spheres as templates. An ultrahigh maximum As(III) adsorption capacity (Qmax) of 892 mg g(-1) was achieved in batch As(III) removal study. Adsorption kinetic study demonstrated that MgO-HS could enable As(III) adsorption 6 times faster as a commercial MgO adsorbent. The ultrahigh adsorption capacity and faster adsorption kinetics were attributed to the unique structure and morphology of MgO-HS that enabled fast transformation into a flower-like porous structure composed of ultrathin Mg(OH)2 nanosheets. This in situ formed structure provided abundant and highly accessible hydroxyl groups, which enhanced the adsorption performance toward As(III). The outstanding As(III) removal capability of MgO-HS showed their great promise as highly efficient adsorbents for As(III) sequestration from contaminated water.

9.
Small ; 12(37): 5169-5177, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27487484

RESUMEN

Intracellular delivery of proteins is a promising strategy of intervention in disease, which relies heavily on the development of efficient delivery platforms due to the cell membrane impermeability of native proteins, particularly for negatively charged large proteins. This work reports a vesicle supra-assembly approach to synthesize novel amine-functionalized hollow dendritic mesoporous silica nanospheres (A-HDMSN). An amine silica source is introduced into a water-oil reaction solution prior to the addition of conventional silica source tetraethylorthosilicate. This strategy favors the formation of composite vesicles as the building blocks which further assemble into the final product. The obtained A-HDMSN have a cavity core of ≈170 nm, large dendritic mesopores of 20.7 nm in the shell and high pore volume of 2.67 cm3 g-1 . Compared to the calcined counterpart without amine groups (C-HDMSN), A-HDMSN possess enhanced loading capacity to large negative proteins (IgG and ß-galactosidase) and improved cellular uptake performance, contributed by the cationic groups. A-HDMSN enhance the intracellular uptake of ß-galactosidase by up to 5-fold and 40-fold compared to C-HDMSN and free ß-galactosidase, respectively. The active form of ß-galactosidase delivered by A-HDMSN retains its intracellular catalytic functions.


Asunto(s)
Aminas/química , Nanosferas/química , Proteínas/administración & dosificación , Dióxido de Silicio/química , Animales , Células CHO , Espectroscopía de Resonancia Magnética con Carbono-13 , Cricetinae , Cricetulus , Citometría de Flujo , Inmunoglobulina G/administración & dosificación , Nanosferas/ultraestructura , Porosidad , Factores de Tiempo , beta-Galactosidasa/administración & dosificación
10.
J Mater Chem B ; 4(43): 7014-7021, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-32263568

RESUMEN

Mono-dispersed mesoporous hollow carbon (MHC) nanospheres with comparable structures have been designed as nanocarriers for the delivery of vancomycin (Van) to inhibit bacterial growth. It is demonstrated that MHC materials possess a Van loading capacity of 861 mg g-1, much higher than that of any Van nanocarrier in previous reports. By comparing the drug loading, release and antibacterial performance of MHC nanospheres with controllable structures, it is shown that MHC with a pore size of 5.8 nm and a wall thickness of 25 nm exhibits compromising storage-release behaviour and achieves extended bactericidal activity of Van towards E. coli and S. epidermidis compared to free Van and other MHC nanocarriers. This study provides new knowledge about the rational design of carbon based nanocarriers to enhance the therapeutic efficacy of antibiotics.

11.
Chem Commun (Camb) ; 51(71): 13642-5, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26226380

RESUMEN

A novel mesoporous material modified with both insulin-binding-aptamers and hydrophobic methyl groups is synthesized. With rationally designed pore structures and surface chemistry, this material is applied in sample pre-treatment for ELISA, and enables the quantification (0.25-5 pg ml(-1)) of insulin in serum, 30-fold enhancement of the limit-of-detection compared to the commercial ELISA kit.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Análisis Químico de la Sangre/métodos , Insulina/sangre , Ensayo de Inmunoadsorción Enzimática , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Transmisión , Estructura Molecular , Oligonucleótidos/química , Oligonucleótidos/metabolismo , Porosidad
13.
J Mater Chem B ; 2(47): 8298-8302, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-32261998

RESUMEN

Novel floating tablets are designed using mesoporous silica nanoparticles for enhancing the drug delivery performance of both hydrophobic and hydrophilic drugs compared to conventional floating tablets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...