Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
2.
Nat Commun ; 14(1): 3342, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291246

RESUMEN

Long noncoding RNAs (lncRNAs) are linked to cancer via pathogenic changes in their expression levels. Yet, it remains unclear whether lncRNAs can also impact tumour cell fitness via function-altering somatic "driver" mutations. To search for such driver-lncRNAs, we here perform a genome-wide analysis of fitness-altering single nucleotide variants (SNVs) across a cohort of 2583 primary and 3527 metastatic tumours. The resulting 54 mutated and positively-selected lncRNAs are significantly enriched for previously-reported cancer genes and a range of clinical and genomic features. A number of these lncRNAs promote tumour cell proliferation when overexpressed in in vitro models. Our results also highlight a dense SNV hotspot in the widely-studied NEAT1 oncogene. To directly evaluate the functional significance of NEAT1 SNVs, we use in cellulo mutagenesis to introduce tumour-like mutations in the gene and observe a significant and reproducible increase in cell fitness, both in vitro and in a mouse model. Mechanistic studies reveal that SNVs remodel the NEAT1 ribonucleoprotein and boost subnuclear paraspeckles. In summary, this work demonstrates the utility of driver analysis for mapping cancer-promoting lncRNAs, and provides experimental evidence that somatic mutations can act through lncRNAs to enhance pathological cancer cell fitness.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Animales , Ratones , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias/genética , Mutación , Oncogenes , Genómica
3.
Biochim Biophys Acta Bioenerg ; 1861(12): 148289, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32810507

RESUMEN

VDAC (Voltage Dependent Anion Channel) is a family of pore forming protein located in the outer mitochondrial membrane. Its channel property ensures metabolites exchange between mitochondria and the rest of the cell resulting in metabolism and bioenergetics regulation, and in cell death and life switch. VDAC1 is the best characterized and most abundant isoform, and is involved in many pathologies, as cancer or neurodegenerative diseases. However, little information is available about its gene expression regulation in normal and/or pathological conditions. In this work, we explored VDAC1 gene expression regulation in normal conditions and in the contest of some metabolic and energetic mitochondrial dysfunction and cell stress as example. The core of the putative promoter region was characterized in terms of transcription factors responsive elements both by bioinformatic studies and promoter activity experiments. In particular, we found an abundant presence of NRF-1 sites, together with other transcription factors binding sites involved in cell growth, proliferation, development, and we studied their prevalence in gene activity. Furthermore, upon depletion of nutrients or controlled hypoxia, as detected in various pathologies, we found that VDAC1 transcripts levels were significantly increased in a time related manner. VDAC1 promoter activity was also validated by gene reporter assays. According to PCR real-time experiments, it was confirmed that VDAC1 promoter activity is further stimulated when cells are exposed to stress. A bioinformatic survey suggested HIF-1α, besides NRF-1, as a most active TFBS. Their validation was obtained by TFBS mutagenesis and TF overexpression experiments. In conclusion, we experimentally demonstrated the involvement of both NRF-1 and HIF-1α in the regulation of VDAC1 promoter activation at basal level and in some peculiar cell stress conditions.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factor Nuclear 1 de Respiración/metabolismo , Regiones Promotoras Genéticas , Canal Aniónico 1 Dependiente del Voltaje/genética , Sitios de Unión , Hipoxia de la Célula/genética , Supervivencia Celular , Regulación de la Expresión Génica , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Biogénesis de Organelos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico , Factores de Transcripción/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...